动态规划-初级

  上一章动态规划入门给了一个非常简单的例子。现在我们讨论更加复杂的问题,如何找到状态之间的转移方程。还是举一个直观的例子:
  一个序列有 N 个数,分别为A[1],A[2],,A[N],求出最长非降子序列的长度。根据第一章我们讲的,我们首先要定义一个“状态”来代表它的子问题,并且找到它的解。正常情况下,某个状态只与它之前的状态有关,而与其后来的状态无关。我们沿用动态规划入门中的思路来一步步找到“状态”和“状态转移方程”。我们可以先假设求 A[1],A[2],,A[i] 的最长非降子序列的长度,其中 i<N ,那么上面的问题就变成原问题的一个子问题(问题规模变小了,可以让 i=1,2,3 等来分析)。然后我们定义 d(i) ,表示以 A[i] 结尾的最长非降子序列的长度。对照动态规划入门中的例题,我们可以知道 d(i) 既是我们要找的状态。例如我们把 d(1) d(N) 都算出来,那么最终我们要找的答案就是其中最大的那个。状态已经找到了,下一步就是找状态转移方程。
  假设我们要找的 N 个数序列如下所示:

———-
5,3,4,8,6,7
———-
根据上面的状态,我们可以得到:

  1. 1 个数的LIS长度d(1)=1(序列:5)
  2. 2 个数的LIS长度d(2)=1;(序列:3)
  3. 3 个数的LIS长度d(3)=2;(序列:3,4;4前面比它小的3,所以 d(3)=d(2)+1
  4. 4 个数的LIS长度d(4)=3;(序列:3,4,8;8前面比它小的数有 3个,所以 d(4)=max{d(1),d(2),d(3)}+1=3

分析到这,状态方程已经可以得到。如果我们已经求出 d(1) d(i1) ,那么 d(i) 可以用下面的状态转移方程得到:

d(i)=max(1,d(j)+1),j<i,A[j]A[i]

  简单的说就是,想要求 d(i) ,就把前面的各个子序列中,最后一个数不大于 A[i] 的序列长度加1,然后取出最大的长度即为 d(i) 。当然,也有可能前面的各个子序列中最后一个数都大于 A[i] ,那么 d(i)=1 ,即它自身称为一个长度为1的子序列。此时,我们可以得到上面例子中最大子序列如下图所示
这里写图片描述
  下面我们用python代码来实现最长子序列问题的求解。

def LIS(A, n):
    d = []
    max_len = 1
    for i in range(n):
        d[i]=1
        for j in range(i):
            if A[j] <= A[i] && d[j] + 1 > d[i]:
                d[i] = d[j] + 1
            if d[i] > max_len:
                max_len = d[j]
    return max_len 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值