NOIP专题复习(10.23)【dp】

一、采药

01背包
d p [ i + u [ j ] ] = m a x ( d p [ i ] + v [ j ] ) dp[i+u[j]]=max(dp[i]+v[j]) dp[i+u[j]]=max(dp[i]+v[j])

二、开心的金明

同上

三、摆花

d p [ i ] [ j ] = ∑ k = i − a [ j ] i d p [ k ] [ j − 1 ] dp[i][j]=\sum_{k=i-a[j]}^{i} {dp[k][j-1]} dp[i][j]=k=ia[j]idp[k][j1]

四、守望者的逃离

(伪dp)
1.   d p [ i ] = d p [ i − 1 ] + 60 , m − = 10 ( m ≥ 10 ) \ dp[i]=dp[i-1]+60,m-=10(m\geq10)  dp[i]=dp[i1]+60,m=10(m10)
d p [ i ] = d p [ i − 1 ] , m + = 4 ( m < 10 ) \quad dp[i]=dp[i-1],m+=4(m<10) dp[i]=dp[i1],m+=4(m<10)
(贪心)
2. d p [ i ] = m a x ( d p [ i ] , d p [ i − 1 ] + 17 ) dp[i]=max(dp[i],dp[i-1]+17) dp[i]=max(dp[i],dp[i1]+17)

五、石子合并

(区间dp)
d p [ i ] [ j ] = m a x / m i n ( d p [ i ] [ k ] + d p [ k ] [ j ] + w [ i ] [ j ] ) ( i ≤ k < j ) dp[i][j]=max/min(dp[i][k]+dp[k][j]+w[i][j])(i\leq k<j) dp[i][j]=max/min(dp[i][k]+dp[k][j]+w[i][j])(ik<j)

六、能量项链

同上

七、花匠

(伪dp)
\划掉 QAQ
d p [ i ] [ 0 ] = m a x ( d p [ j ] [ 1 ] ) + 1 ( a j < a i ) dp[i][0]=max(dp[j][1])+1(a_j<a_i) dp[i][0]=max(dp[j][1])+1(aj<ai)
d p [ i ] [ 1 ] = m a x ( d p [ j ] [ 0 ] ) + 1 ( a j > a i ) dp[i][1]=max(dp[j][0])+1(a_j>a_i) dp[i][1]=max(dp[j][0])+1(aj>ai)
还在想这怕是要用数据结构维护,这黄题怎么这么蓝
正解:

dp[i][0]=(a[i-1]>a[i])?dp[i-1][1]+1:dp[i-1][0];
dp[i][1]=(a[i-1]<a[i])?dp[i-1][0]+1:dp[i-1][1];
八、飞翔的小鸟

d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j − p ∗ u p [ i ] , d p [ i − 1 ] [ j + d n [ i ] ] ) dp[i][j]=min(dp[i-1][j-p*up[i],dp[i-1][j+dn[i]]) dp[i][j]=min(dp[i1][jpup[i],dp[i1][j+dn[i]])
若 不 存 在 d p [ i ] [ j ] ! = I N F ( l [ i ] < j < r [ i ] ) , 死 若不存在dp[i][j]!=INF(l[i]<j<r[i]),死 dp[i][j]!=INFl[i]<j<r[i]
O ( n 3 ) O(n^3) O(n3)
优化 p ∗ u p [ i ] p*up[i] pup[i](完全背包)
-> d p [ i ] [ j ] = m i n ( d p [ i ] [ j − u p [ j ] ] , d p [ i − 1 ] [ j − u p [ i ] ) dp[i][j]=min(dp[i][j-up[j]],dp[i-1][j-up[i]) dp[i][j]=min(dp[i][jup[j]],dp[i1][jup[i])
要拆开。。。
d p [ i ] [ j ] = m i n ( d p [ i ] [ j ] , d p [ i − 1 ] [ j + d n [ i ] ] ) dp[i][j]=min(dp[i][j],dp[i-1][j+dn[i]]) dp[i][j]=min(dp[i][j],dp[i1][j+dn[i]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值