笔记 前端需要了解的常见数据结构--树

二叉树

树拥有很多种结构,二叉树是树中最常用的结构,同时也是一个天然的递归结构。
二叉树拥有一个根节点,每个节点至多拥有两个子节点,分别为:左节点和右节点。树的最底部节点称之为叶节点,当一颗树的叶数量数量为满时,该树可以称之为满二叉树

二分搜索树

二分搜索树也是二叉树,拥有二叉树的特性。但是区别在于二分搜索树每个节点的值都比他的左子树的值大,比右子树的值小。

实现二分搜索树

class Node {
  constructor(value) {
    this.value = value
    this.left = null
    this.right = null
  }
}
class BST {
  constructor() {
    this.root = null
    this.size = 0
  }
  getSize() {
    return this.size
  }
  isEmpty() {
    return this.size === 0
  }
  addNode(v) {
    this.root = this._addChild(this.root, v)
  }
  // 添加节点时,需要比较添加的节点值和当前
  // 节点值的大小
  _addChild(node, v) {
    if (!node) {
      this.size++
      return new Node(v)
    }
    if (node.value > v) {
      node.left = this._addChild(node.left, v)
    } else if (node.value < v) {
      node.right = this._addChild(node.right, v)
    }
    return node
  }
}

树的遍历

对于树的遍历来说,有三种遍历方法,分别是先序遍历、中序遍历、后序遍历。三种遍历的区别在于何时访问节点。在遍历树的过程中,每个节点都会遍历三次,分别是遍历到自己,遍历左子树和遍历右子树。如果需要实现先序遍历,那么只需要第一次遍历到节点时进行操作即可。
深度遍历

// 先序遍历可用于打印树的结构
// 先序遍历先访问根节点,然后访问左节点,最后访问右节点。
preTraversal() {
  this._pre(this.root)
}
_pre(node) {
  if (node) {
    console.log(node.value)
    this._pre(node.left)
    this._pre(node.right)
  }
}
// 中序遍历可用于排序
// 对于 BST 来说,中序遍历可以实现一次遍历就
// 得到有序的值
// 中序遍历表示先访问左节点,然后访问根节点,最后访问右节点。
midTraversal() {
  this._mid(this.root)
}
_mid(node) {
  if (node) {
    this._mid(node.left)
    console.log(node.value)
    this._mid(node.right)
  }
}
// 后序遍历可用于先操作子节点
// 再操作父节点的场景
// 后序遍历表示先访问左节点,然后访问右节点,最后访问根节点。
backTraversal() {
  this._back(this.root)
}
_back(node) {
  if (node) {
    this._back(node.left)
    this._back(node.right)
    console.log(node.value)
  }
}

广度遍历

breadthTraversal() {
  if (!this.root) return null
  let q = new Queue()
  // 将根节点入队
  q.enQueue(this.root)
  // 循环判断队列是否为空,为空
  // 代表树遍历完毕
  while (!q.isEmpty()) {
    // 将队首出队,判断是否有左右子树
    // 有的话,就先左后右入队
    let n = q.deQueue()
    console.log(n.value)
    if (n.left) q.enQueue(n.left)
    if (n.right) q.enQueue(n.right)
  }
}

如何在树中寻找最小值或最大数?因为二分搜索树的特性,所以最小值一定在根节点的最左边,最大值相反。

getMin() {
  return this._getMin(this.root).value
}
_getMin(node) {
  if (!node.left) return node
  return this._getMin(node.left)
}
getMax() {
  return this._getMax(this.root).value
}
_getMax(node) {
  if (!node.right) return node
  return this._getMin(node.right)
}

向上取整和向下取整,这两个操作是相反的,所以代码也是类似的,这里只介绍如何向下取整。
既然是向下取整,那么根据二分搜索树的特性,值一定在根节点的左侧。只需要一直遍历左子树直到当前节点的值不再大于等于需要的值,然后判断节点是否还拥有右子树。如果有的话,继续上面的递归判断。

floor(v) {
  let node = this._floor(this.root, v)
  return node ? node.value : null
}
_floor(node, v) {
  if (!node) return null
  if (node.value === v) return v
  // 如果当前节点值还比需要的值大,就继续递归
  if (node.value > v) {
    return this._floor(node.left, v)
  }
  // 判断当前节点是否拥有右子树
  let right = this._floor(node.right, v)
  if (right) return right
  return node
}

排名,这是用于获取给定值的排名或者排名第几的节点的值,这两个操作也是相反的,所以这个只介绍如何获取排名第几的节点的值。对于这个操作而言,我们需要略微的改造点代码,让每个节点拥有一个 size 属性。该属性表示该节点下有多少子节点(包含自身)。

class Node {
  constructor(value) {
    this.value = value
    this.left = null
    this.right = null
    // 修改代码
    this.size = 1
  }
}
// 新增代码
_getSize(node) {
  return node ? node.size : 0
}
_addChild(node, v) {
  if (!node) {
    return new Node(v)
  }
  if (node.value > v) {
    // 修改代码
    node.size++
    node.left = this._addChild(node.left, v)
  } else if (node.value < v) {
    // 修改代码
    node.size++
    node.right = this._addChild(node.right, v)
  }
  return node
}
select(k) {
  let node = this._select(this.root, k)
  return node ? node.value : null
}
_select(node, k) {
  if (!node) return null
  // 先获取左子树下有几个节点
  let size = node.left ? node.left.size : 0
  // 判断 size 是否大于 k
  // 如果大于 k,代表所需要的节点在左节点
  if (size > k) return this._select(node.left, k)
  // 如果小于 k,代表所需要的节点在右节点
  // 注意这里需要重新计算 k,减去根节点除了右子树的节点数量
  if (size < k) return this._select(node.right, k - size - 1)
  return node
}

删除节点
对于删除节点来说,会存在以下几种情况:需要删除的节点没有子树;需要删除的节点只有一条子树;需要删除的节点有左右两条树
删除最小节点,对于删除最小节点来说,是不存在第三种情况的,删除最大节点操作是和删除最小节点相反的,所以这里也就不再赘述。

delectMin() {
  this.root = this._delectMin(this.root)
  console.log(this.root)
}
_delectMin(node) {
  // 一直递归左子树
  // 如果左子树为空,就判断节点是否拥有右子树
  // 有右子树的话就把需要删除的节点替换为右子树
  if ((node != null) & !node.left) return node.right
  node.left = this._delectMin(node.left)
  // 最后需要重新维护下节点的 `size`
  node.size = this._getSize(node.left) + this._getSize(node.right) + 1
  return node
}

删除任意节点,当遇到这种情况时,需要取出当前节点的后继节点(也就是当前节点右子树的最小节点)来替换需要删除的节点。然后将需要删除节点的左子树赋值给后继结点,右子树删除后继结点后赋值给他。
因为二分搜索树的特性,父节点一定比所有左子节点大,比所有右子节点小。那么当需要删除父节点时,势必需要拿出一个比父节点大的节点来替换父节点。这个节点肯定不存在于左子树,必然存在于右子树。然后又需要保持父节点都是比右子节点小的,那么就可以取出右子树中最小的那个节点来替换父节点。

delect(v) {
  this.root = this._delect(this.root, v)
}
_delect(node, v) {
  if (!node) return null
  // 寻找的节点比当前节点小,去左子树找
  if (node.value < v) {
    node.right = this._delect(node.right, v)
  } else if (node.value > v) {
    // 寻找的节点比当前节点大,去右子树找
    node.left = this._delect(node.left, v)
  } else {
    // 进入这个条件说明已经找到节点
    // 先判断节点是否拥有拥有左右子树中的一个
    // 是的话,将子树返回出去,这里和 `_delectMin` 的操作一样
    if (!node.left) return node.right
    if (!node.right) return node.left
    // 进入这里,代表节点拥有左右子树
    // 先取出当前节点的后继结点,也就是取当前节点右子树的最小值
    let min = this._getMin(node.right)
    // 取出最小值后,删除最小值
    // 然后把删除节点后的子树赋值给最小值节点
    min.right = this._delectMin(node.right)
    // 左子树不动
    min.left = node.left
    node = min
  }
  // 维护 size
  node.size = this._getSize(node.left) + this._getSize(node.right) + 1
  return node
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值