- 博客(20)
- 收藏
- 关注
原创 【扩展卡尔曼滤波器实际运用案例】
扩展卡尔曼滤波是利用泰勒级数将非线性系统进行线性化处理的一种方法,文章直接给出了算法步骤和具体案例,注重实践运用。
2025-04-21 17:36:30
1088
原创 【强化学习基础概念】
强化学习(reinforcement learning)是机器通过与环境交互来实现目标的一种计算方法,它是实现序贯决策的机器学习方法。
2025-03-10 16:41:08
985
原创 【理想解法学习笔记】
TOPSIS(Technique for Order Preference by Simi larity to IdealSolution)法是一种逼近理想解的排序方法。其基本的处理思路是:首先建立初始化决策矩阵,而后基于规范化后的初始矩阵,找出有限方案中的最优方案和最劣方案(也就是正、负理想解),然后分别计算各个评价对象与最优方案和最劣方案的距离,获得各评价方案与最优方案的相对接近程度,最后进行排序,并以此作为评价方案优劣的依据。
2025-03-10 16:39:19
680
原创 三维极坐标转笛卡尔坐标均方差的关系
已知雷达量测极坐标数据,分别为斜距离。那么当该量测转换到对应的笛卡尔坐标系时,有。,若已知斜距离的均方差为。计算推导,并作近似处理,三个方向的均方差分别为。
2024-10-18 16:27:29
704
原创 多因素决策之层次分析法
层次分析法(Analytic Hierarchy Process,AHP),通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重。将方案层对准则层的权重及各方案对于每一准则的权重。将方案层对准则层的权重及准则层对目标层的权重进行综合,最终确定方案层对目标层的权重,从而确定出决策结果。
2024-07-04 15:38:58
941
原创 基本蚁群算法介绍
蚂蚁是一种社会性昆虫,蚂蚁之间可以相互协作完成复杂 的任务。单个蚂蚁的行为较为简单,但是由简单个体所组成的蚂蚁群体却表现出了极为复杂的行为。真实蚁群在觅食时能够在蚁穴和食物之间找到一条最短路径,并且在环境变化时,比如出现新的障碍物时,蚁群可以相互协作找到一条新的最短路径。
2024-06-07 14:32:18
1650
1
原创 经典模拟退火算法介绍(含实例)
模拟退火算法的思想来源于对固体退火降温过程的模拟。即将固体加温至充分高,再让其徐徐冷却。在加热固体时,固体中原子的热运动不断增强,内能增大,随着温度的不断升高,固体的长程有序被彻底破坏,固体内部粒子随温度的升高而变为无序状态;冷却时,粒子逐渐趋于有序,在每个温度下都达到平衡状态; 最后在常温下达到基态,同时内能也减为最小。
2024-05-28 15:29:35
5105
原创 粒子群算法优化多目标优化问题
粒子群算法优化多目标优化问题,以背包问题举例,向背包放入不同物品,要求背包内物品总价值越大越好,总体积越小越好。
2024-05-11 15:21:24
1380
1
原创 粒子群算法入门
Reynolds对鸟群飞行的研究发现,鸟仅仅是追踪它有限数量的邻 居,但最终的整体结果是整个鸟群好像在一个中心的控制之下,即复杂的全局行为是由简单规则的相互作用引起的。 PSO算法中,将鸟群的个体位置或食物当作优化问题的解,利用群体中个体与最优个体以及个体之间的信息交互,引导整个群体中个体在保留自身多样性信息的同时,朝向群体最优个体收敛,通过不断地更新逐渐找到最优解. 支配粒子是指在搜索过程中表现出较优性能的粒子,它们的位置和速度会影响其他粒子的移动方向和步长。维的全局极值点的位置。
2024-04-30 08:56:16
734
原创 遗传算法交叉概率和变异概率自适应方法
论文《自适应遗传算法交叉变异算子的改进》提出的方法(IAGA,邝航宇),原论文经过验证发现其取值范围存在问题,函数本身不适用,可能是打印错误。 在遗传算法的初期阶段,种群需要更多的多样性来探索解空间,较大的交叉概率有助于促进新基因组合,同样较大的变异概率。随着进化的进行,算法逐渐接近最优解,这时应适当减小交叉概率和变异概率,以。表示参与交叉父代中适应值较大一方的适应值,取值范围为。,个体适应值越大,当前的交叉概率和变异概率应越小。表示参与交叉父代中适应值较大一方的适应值,
2024-04-10 10:48:22
7253
3
原创 【遗传算法求解TSP问题】
遗传算法由美国Holland教授最先提出的,其基本思想是模拟自然界遗传机制和生物进化论而形成的一种过程搜索最优解的算法,模拟自然界生物的繁殖、交叉、变异现象,每一代经过自然选择会保留相对优秀的个体。算法本身主要依赖遗传算子(选择、交叉和变异)对种群中的个体进行组合,产生新的个体,并按照某种指标筛选个体,不断地重复该过程,直到满足某种收敛指标为止。
2024-02-23 11:27:51
2360
1
原创 【c++中的浅拷贝与深拷贝学习】
总的来说,如果一个类中的成员只包含普通的成员,使用复制运算符,copy函数时,这时浅拷贝等价于深拷贝。但是当类对象中含有指针类型的成员变量时,就需要注意重新设计拷贝构造函数,复制时应该为指针成员重新开辟内存空间,之后复制内容,实现深拷贝。
2024-02-04 16:27:10
1650
1
原创 【遗传算法入门介绍】
遗传算法(genetic algorithm,GA)是一种进化算法,其基本原理是效仿生物界中的“物竞天择,适者生存”的演化法则。遗传算法是吧问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中的染色体信息,最终生成复合优化目标的染色体。 在遗传算法中,染色体是有一个个基因组成的串,它代表一个个体。一定数量的个体就组成了种群,每个个体对环境的适应程度称为适应度。遗传算法的基本步骤编码:代表解的形式,指定编码格式,编码好的个体即为一个解。
2024-01-31 17:08:32
1545
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人