【洛谷 3128】最大流

题目来源:洛谷 3128

思路:

首先做lca,找到lca以后进行点的标记,开始的位置和结束的位置+1,lca -1,lca的父节点-1,然后做树上差分,顺便记录答案即可。

代码:

#include <bits/stdc++.h>
#define pii pair<int,int>
#define mp(a,b) make_pair(a,b)
#define fi first
#define se second
using namespace std;
const int maxn = 50010;
int _first[maxn], _to[maxn<<1], _next[maxn<<1], cnt;
int up[maxn][25], deep[maxn], son[maxn], p, mx, val[maxn];
bool vis[maxn];
priority_queue <pii> q1;
void add(int a, int b){
    _next[++cnt] = _first[a];
    _first[a] = cnt;
    _to[cnt] = b;
}
void dfs(int now){
    for(int i = 1; i <= 20; i ++)
        up[now][i] = up[up[now][i-1]][i-1];
    bool ok = 0;
    for(int i = _first[now]; i; i = _next[i])
        if(_to[i] != up[now][0])
            up[_to[i]][0] = now, deep[_to[i]] = deep[now] + 1, dfs(_to[i]), ok = 1;
    if(!ok) son[++p] = now;
    return;
}
void calc(){
    for(int i = 1; i <= p; i ++) 
        q1.push(mp(deep[son[i]], son[i])), vis[son[i]] = 1;
    while(!q1.empty()){
        pii t = q1.top();
        q1.pop();
        vis[t.se] = 0;
        val[up[t.se][0]] += val[t.se];
        mx = max(mx, val[up[t.se][0]]);
        if(up[t.se][0] && !vis[up[t.se][0]]) q1.push(mp(deep[up[t.se][0]], up[t.se][0])), vis[up[t.se][0]] = 1;
    }
}
int lca(int a, int b){
    if(a == b) return a;
    if(deep[a] < deep[b]) swap(a, b);
    if(deep[a] != deep[b])
        for(int i = 20; i >= 0; i --) 
            if(deep[up[a][i]] >= deep[b]) a = up[a][i];
    if(a == b) return a;
    for(int i = 20; i >= 0; i --)
        if(up[a][i] != up[b][i]) a = up[a][i], b = up[b][i];
    return up[a][0];
}
int main(){
    int n, m;
    scanf("%d%d", &n, &m);
    for(int i = 1; i < n; i ++){
        int a, b;
        scanf("%d%d", &a, &b);
        add(a,b), add(b,a);
    }
    deep[1] = 1;
    dfs(1);
    for(int i = 1; i <= m; i ++){
        int a, b;
        scanf("%d%d", &a, &b);
        val[a] += 1;
        val[b] += 1;
        int t = lca(a,b);
        val[t] -= 1;
        val[up[t][0]] -= 1;
    }
    calc();
    printf("%d", mx);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值