【BZOJ 1044】[HAOI2008]木棍分割

思路:

首先二分的答案,算出切m下,最长的一段的最短值。
用动态规划求方案数。
f[i][j] 表示切了 i 次,使用到了前j个木段的方案数。
状态转移方程:
f[i][j]=f[i1][k](1kj1) (sum[j]sum[k]ans)
对于初始的条件,显然有 f[0][1]=1
不难发现,k是随着j的增长递增的,所以用two pointer维护即可。
对于空间,第一维的显然可以滚掉。

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 50010;
const int p = 10007; 
int n, m, sm, mx;
int val[maxn], sum[maxn];
int f[2][maxn];
bool check(int x){
    int res = 0, tmp = 0;
    for(int i = 1; i <= n; i ++){
        if(tmp + val[i] <= x) tmp += val[i];
        else tmp = val[i], res ++;
    }
    return res <= m;
}
int main(){
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i ++) scanf("%d", &val[i]), sm += val[i], mx = max(mx, val[i]);
    for(int i = 1; i <= n; i ++) sum[i] = sum[i-1] + val[i];
    int l = mx, r = sm, ans = 0;
    while(l <= r){
        int mid = (l+r) >> 1;
        if(check(mid)) ans = mid, r = mid - 1;
        else l = mid + 1;
    }
    int now = 0, res = 0;
    for(int i = 1; sum[i] <= ans; i ++) f[now][i] = 1;
    for(int i = 1; i <= m; i ++){
        int ll = 0, rr = 0, x = 0;
        now ^= 1; 
        for(int j = 1; j <= n; j ++){
            while(rr < j-1) x = ((x+f[now^1][++rr])%p+p)%p;
            while(sum[j]-sum[ll] > ans) x = ((x-f[now^1][ll++])%p+p)%p;
            f[now][j] = x;
        }
        res = (res+f[now][n])%p;
    }
    printf("%d %d", ans, res);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值