【BZOJ 2002】[Hnoi2010] 弹飞绵羊

本文介绍了一种使用分块技术来优化查询效率的方法。通过预先计算每个数据块内到达下一个块所需的最小步骤数及对应的节点,可以有效地减少在线查询时的时间消耗。此方法适用于离线预处理后频繁查询的应用场景。

分块。
记录每个点到下一块区间需要走的步数,和到达下个区间的哪个点。
时间复杂度:O(qn)

#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std;
const int maxn = 200010;
int n, m, Size;
int k[maxn], bl[maxn], sp[maxn], pt[maxn];
int main(){
    scanf("%d", &n), Size = sqrt(n);
    for(int i = 1; i <= n; i ++) scanf("%d", &k[i]);
    for(int i = 1; i <= n; i ++) bl[i] = (i-1)/Size + 1;
    for(int i = n; i >= 1; i --){
        int nxt = i + k[i];
        if(nxt > n) sp[i] = 1, pt[i] = 0;
        else if(bl[nxt] > bl[i]) sp[i] = 1, pt[i] = nxt;
        else sp[i] = sp[nxt] + 1, pt[i] = pt[nxt];
    }
    scanf("%d", &m);
    for(int i = 1; i <= m; i ++){
        int a, b, c;
        scanf("%d%d", &a, &b);
        b ++;
        if(a == 1){
            int res = 0;
            for(int j = b; j; j = pt[j]) res += sp[j];
            printf("%d\n", res);
        }else{
            scanf("%d", &c);
            k[b] = c;
            for(int j = b; bl[j] == bl[b]; j --){
                int nxt = j + k[j];
                if(nxt > n) sp[j] = 1, pt[j] = 0;
                else if(bl[nxt] > bl[j]) sp[j] = 1, pt[j] = nxt;
                else sp[j] = sp[nxt] + 1, pt[j] = pt[nxt];
            }
        } 
    }
    return 0;
} 
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值