数据结构与算法(Python)(一)—— 算法的概念

1. 引入

先来看一道题:
如果a+b+c=1000,且a^2+b^2=c^2(a,b,c为自然数),如何求出所有a、b、c可能的组合?
我们可以使用枚举法解决:

for a in range(1001):
	for b in range(1001):
		for c in range(1001):
			if a + b + c == 1000 and a**2 + b**2 == c**2:
				print(a, b, c)

花费时间:[Finished in 123.3s]
这个时间太久了,我们有什么办法可以加快速度呢?

2. 算法的提出

2.1 算法的概念

  • 算法是独立存在的一种解决问题的方法和思想。

算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务。一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。

2.2 算法的五大特性

  1. 输入: 算法具有0个或多个输入
  2. 输出: 算法至少有1个或多个输出
  3. 有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
  4. 确定性:算法中的每一步都有确定的含义,不会出现二义性
  5. 可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成

2.3 引入案例的改进

从上述题目中可以看出,a、b、c之间是有直接关系的,c可以用a、b来表示:c=1000-a-b,于是,我们将上述案例进行以下改进:

for a in range(1001):
	for b in range(1001):
		c = 1000 - a - b
		if a**2 + b**2 == c**2:
			print(a, b, c)

花费时间:[Finished in 1.12s],提高了100倍!

3. 算法效率衡量——时间复杂度与“大O记法”

3.1 执行时间反应算法效率

对于同一问题,我们给出了两种解决算法,在两种算法的实现中,我们对程序执行的时间进行了测算,发现两段程序执行的时间相差悬殊,由此我们可以得出结论:实现算法程序的执行时间可以反应出算法的效率,即算法的优劣
但程序的运行离不开计算机环境(包括硬件和操作系统),这些客观原因会影响程序运行的速度并反应在程序的执行时间上。也就是说,单纯依靠运行的时间来比较算法的优劣并不一定是客观准确的! 那么如何才能客观的评判一个算法的优劣呢?

3.2 时间复杂度与“大O记法”

我们假定计算机执行算法的每一个基本操作,其时间是一个固定的时间单位,那么有多少个基本操作就代表会花费多少时间单位。算然对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作(即花费多少时间单位)在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率。对于算法的时间效率,我们可以用 “大O记法” 来表示。

  • “大O记法” :对于单调的整数函数 f f f,如果存在一个整数函数 g g g和实常数 c > 0 c>0 c>0,使得对于充分大的 n n n总有 f ( n ) < = c ∗ g ( n ) f(n)<=c*g(n) f(n)<=cg(n),就说函数 g g g f f f的一个渐近函数(忽略常数),记为 f ( n ) = O ( g ( n ) ) f(n)=O(g(n)) f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数 g g g的约束,亦即函数 f f f与函数 g g g的特征相似。

  • 时间复杂度:假设存在函数 g g g,使得算法 A A A处理规模为n的问题示例所用时间为 T ( n ) = O ( g ( n ) ) T(n)=O(g(n)) T(n)=O(g(n)),则称 O ( g ( n ) ) O(g(n)) O(g(n))为算法 A A A的渐近时间复杂度,简称时间复杂度,记为 T ( n ) T(n) T(n)

3.3 最坏时间复杂度

分析算法时,存在几种可能的考虑:

  • 算法完成工作最少需要多少基本操作,即最优时间复杂度
  • 算法完成工作最多需要多少基本操作,即最坏时间复杂度
  • 算法完成工作平均需要多少基本操作,即平均时间复杂度

对于最优时间复杂度,其价值不大,因为它没有提供什么有用信息,其反映的只是最乐观最理想的情况,没有参考价值;对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作;对于平均时间复杂度,是对算法的一个全面评价,因此它完整全面的反映了这个算法的性质。但另一方面,这种衡量并没有保证,不是每个计算都能在这个基本操作内完成。而且,对于平均情况的计算,也会因为应用算法的实例分布可能并不均匀而难以计算。
因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度。

3.4 时间复杂度的几条基本计算规则

  1. 基本操作,即只有常数项,认为其时间复杂度为 O ( 1 ) O(1) O(1)
  2. 顺序结构,时间复杂度按加法进行计算
  3. 循环结构,时间复杂度按乘法进行计算
  4. 分支结构,时间复杂度取最大值
  5. 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
  6. 在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度

3.5 常见时间复杂度

执行次数函数举例非正式术语
12 12 12 O ( 1 ) O(1) O(1)常数阶
2 n + 3 2n+3 2n+3 O ( n ) O(n) O(n)线性阶
3 n 2 + 2 n + 1 3n^2+2n+1 3n2+2n+1 O ( n 2 ) O(n^2) O(n2)平方阶
5 l o g 2 n + 20 5log_2n+20 5log2n+20 O ( l o g n ) O(logn) O(logn)对数阶
2 n + 3 n l o g 2 n + 19 2n+3nlog_2n+19 2n+3nlog2n+19 O ( n l o g n ) O(nlogn) O(nlogn)nlogn阶
6 n 3 + 2 n 2 + 3 n + 4 6n^3+2n^2+3n+4 6n3+2n2+3n+4 O ( n 3 ) O(n^3) O(n3)立方阶
2 n 2^n 2n O ( 2 n ) O(2^n) O(2n)指数阶

3.6 常见时间复杂度之间的关系

在这里插入图片描述
所消耗的时间从小到大为:
O ( 1 ) < O ( l o g n ) < O ( n ) < O ( n l o g n ) < O ( n 2 ) < O ( n 3 ) < O ( 2 n ) < O ( n ! ) < O ( n n ) O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n) O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n3)<O(2n)<O(n!)<O(nn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值