236. 二叉树的最近公共祖先
- 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
示例:
给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
思路1:递归
这种方法非常直观。先深度遍历改树。当你遇到节点 p 或 q 时,返回一些布尔标记。该标志有助于确定是否在任何路径中找到了所需的节点。最不常见的祖先将是两个子树递归都返回真标志的节点。它也可以是一个节点,它本身是p或q中的一个,对于这个节点,子树递归返回一个真标志。
算法:
- 从根节点开始遍历树。
- 如果当前节点本身是 p 或 q 中的一个,我们会将变量 mid 标记为 true,并继续搜索左右分支中的另一个节点。
- 如果左分支或右分支中的任何一个返回 true,则表示在下面找到了两个节点中的一个。
- 如果在遍历的任何点上,左、右或中三个标志中的任意两个变为 true,这意味着我们找到了节点 p 和 q 的最近公共祖先。
代码实现1:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def __init__(self):
self.ans = None
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
def recurse_tree(cur_node):
if cur_node is None:
return False
# 向左递归寻找,再向右递归寻找
left = recurse_tree(cur_node.left)
right = recurse_tree(cur_node.right)
# 如果当前节点左右子树都为False,判断当前节点是否为目标值其中之一
mid = True if cur_node == p or cur_node == q else False
# 满足左子树、右子树、当前节点 三个中两个为真,则当前节点为公共祖先
if mid + left + right >= 2:
self.ans = cur_node
# 只要左子树、右子树、当前节点有一个为真,返回真
return mid or left or right
recurse_tree(root)
return self.ans
105. 从前序与中序遍历序列构造二叉树
- 根据一棵树的前序遍历与中序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
示例:
给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
思路:递归
前序遍历的特点是,根节点始终出现在数组的第一位,而中序遍历中根节点出现在数组的中间位置。
根据上面给出的两个数组,首先我们就可以拼出根节点,它就是1。
题目上已说明数组中不存在重复元素,那么由1就可以定位到中序数组的中间位置,中序数组中1左边的部分就是左子树,1右边部分就是右子树。
下面这张图,根节点是橘色,绿色部分是左子树,蓝色部分是右子树。
前序数组的左子树部分+根节点是1,2,4,5,中序数组的左子树部分+根节点是4,2,5,1。这两者的数组长度是一样的。
我们可以根据中序数组的中间位置1,来确定前序数组的左右部分,由于前序数组第一个是根节点,
所以其左边部分是:[1:mid_index],右半部分是[mid_index+1:]
这里的mid_index是中序数组的中间下标位置。
递归函数实现如下:
- 终止条件:前序和中序数组为空
- 根据前序数组第一个元素,拼出根节点,再将前序数组和中序数组分成两半,递归的处理前序数组左边和中序数组左边,递归的处理前序数组右边和中序数组右边。
代码实现:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
if not (preorder and inorder):
return None
# 根据前序数组的第一个元素,确定根节点
root = TreeNode(preorder[0])
# 找到根节点在中序数组中的索引
mid_index = inorder.index(preorder[0])
# 递归的处理前序和中序数组的左边部分
root.left = self.buildTree(preorder[1:mid_index+1], inorder[:mid_index])
# 递归的处理前序和中序数组的右边部分
root.right = self.buildTree(preorder[mid_index+1:], inorder[mid_index+1:])
return root
94. 二叉树的中序遍历
- 给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。
示例:
二叉树:[3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回其层次遍历结果:
[
[3],
[9,20],
[15,7]
]
思路1:迭代
代码实现1:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def levelOrder(self, root: TreeNode) -> List[List[int]]:
if not root:
return []
queue = [root]
ret = []
while queue:
# 获取当前队列长度,即当前层的节点个数
size = len(queue)
temp = []
# 从队列中获取当前层所有节点,放入临时列表temp中,同时将当前层所有左右子树放入队列
for _ in range(size):
r = queue.pop(0)
temp.append(r.val)
if r.left:
queue.append(r.left)
if r.right:
queue.append(r.right)
# 将临时列表放入结果列表中
ret.append(temp)
return ret
思路2:递归
把二叉树的样子调整一下,摆成一个田字形的样子。田字形的每一层就对应一个list。
按照深度优先的处理顺序,会先访问节点1,再访问节点2,接着是节点3。
之后是第二列的4和5,最后是第三列的6。
每次递归的时候都需要带一个index(表示当前的层数),也就对应那个田字格子中的第几行,如果当前行对应的list不存在,就加入一个空list进去。
代码实现2:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def levelOrder(self, root: TreeNode) -> List[List[int]]:
ret = []
if not root:
return ret
def helper(node, layer):
# 如果结果列表长度与当前层数相等,则在结果列表中加入一个空列表
if len(ret) == layer:
ret.append([])
# 向当前层的列表中添加元素
ret[layer].append(node.val)
# 递归向左右子树添加,并将层数+1
if node.left:
helper(node.left, layer + 1)
if node.right:
helper(node.right, layer + 1)
helper(root, 0)
return ret