ZigZagK的生成树

/*
ZigZagK是个爱思考的孩子。
这天,ZigZaK不想学习,开始思考最小生成树相关问题,他自主思考出了Xor生成树,Or(z)生成树的完美解决方法,
甚至想出了随机生成树的随机做法。他想把数论与最小成树相结合。于是他定义一条连接点 uu 和点 vv 的边的边
权为 gcd(u,v)gcd(u,v),他想求出这样的定义下的 n 个点的完全图的最大生成树。*/

//用桶排就行了。
//复杂度 O(nlnn)O(nln?n)

#include<bits/stdc++.h>
using namespace std;
long long fa[10000010],ans,n;
long long getfa(int x)
{
	if(fa[x]==x)return x;
	return fa[x]=getfa(fa[x]);
}
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)fa[i]=i;//krskr,初始化,自己的父亲是自己 
	for(int i=n/2;i>=1;i--)
	for(int j=i*2;j<=n;j+=i)//循环暴力枚举因数 
    if(getfa(i)!=getfa(j))fa[getfa(i)]=getfa(j),ans+=i;//连到因子下面
	// 4 8 不在一个集合 ,8->4 ans+=4; 8连到4下面,价值为4; 
	cout<<ans;
	return 0;
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值