elasticsearch + ik + springboot集成,插入数据和分词、高亮查询

本次使用的中间件版本:

elasticsearch:7.13.3
ik:7.13.2
springboot:2.1.3.RELEASE

1、中文分词器IK下载安装
下载地址

https://github.com/medcl/elasticsearch-analysis-ik/releases

在这里插入图片描述
2、下载后,解压到elasticsearch的插件目录中
在这里插入图片描述
3、修改IK的版本描述,因为这次用的IK的版本低于ES的版本
IK的版本号修改成当前ES的版本号
在这里插入图片描述
4、再次启动ES,通过ES的可视化工具,创建index
在这里插入图片描述
给刚才追加的索引,追加mapping
在这里插入图片描述
查看刚才设定的mapping,已经设定成功了
在这里插入图片描述
看看分词器的效果,使用其他工具也可以,这次使用postman
ik_smart的分词效果(汉语习惯)
在这里插入图片描述
ik_max_word的分词效果(穷举效果)
在这里插入图片描述
至此,ES + IK的简单设置,基本完成

5、springboot中集成ES
修改springboot的pom依赖

       <!-- springboot集成elasticsearch的依赖 -->
       <dependency>
           <groupId>org.elasticsearch.client</groupId>
           <artifactId>elasticsearch-rest-high-level-client</artifactId>
           <version>7.6.2</version>
       </dependency>

       <dependency>
           <groupId>org.springframework.boot</groupId>
           <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
       </dependency>

yml配置文件中进行追加

# Spring配置
spring:
  #elasticsearch 配置
  data:
    elasticsearch:
      # 默认elasticsearch
      cluster-name: elasticsearch
      # 9200是Http协议,主要用于外部通讯
      # 9300是Tcp协议,jar之间通过tcp协议通讯
      cluster-nodes: 127.0.0.1:9200

6、使用java程序进行插入数据

    @Autowired
    private RestHighLevelClient restHighLevelClient;
    IndexRequest indexRequest = new IndexRequest("tongyuan6_index", "_doc", "1");
    User user = new User();
    user.setName("李娜");
    user.setAge("25");
    user.setInfo("全国人民大团结万岁,中国的交通很发达,道路很漂亮,非常畅通?");
    indexRequest.source(JSONObject.toJSONString(user), XContentType.JSON);
    IndexResponse index = restHighLevelClient.index(indexRequest, RequestOptions.DEFAULT);
    System.out.println(JSONObject.toJSONString(index));

在这里插入图片描述

7、使用java程序进行分词、高亮检索

public List<JSONObject> searchContentListByES(PmcBimComment pmcBimComment) {
   List<JSONObject> blogList = new ArrayList<JSONObject>();
   try {
		   SearchRequest searchRequest = new SearchRequest("tongyuan6_index");
		   SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
		   //创建一个新的HighlightBuilder、高亮显示
		   HighlightBuilder highlightBuilder = new   HighlightBuilder().field("*").requireFieldMatch(false);
		   highlightBuilder.preTags("<span style=\"color:red\">");
		   highlightBuilder.postTags("</span>");
		   sourceBuilder.highlighter(highlightBuilder);
		   //创建一个新的MatchQueryBuilder、分词检索
		   MatchQueryBuilder matchQueryBuilder = QueryBuilders.matchQuery("info", "济南高新区");
		   sourceBuilder.query(matchQueryBuilder).timeout(new TimeValue(60, TimeUnit.SECONDS));
		   searchRequest.source(sourceBuilder);
		   //进行检索
		   SearchResponse response = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
		
		   // 对接过进行高亮显示编辑
		   for(SearchHit hit : response.getHits()){
		       Map<String, Object> source = hit.getSourceAsMap();
		       // 处理高亮片段
		       Map<String, HighlightField> highlightFields = hit.getHighlightFields();
		       HighlightField nameField = highlightFields.get("info");
		       if (nameField != null) {
		           Text[] fragments = nameField.fragments();
		           StringBuilder nameTmp = new StringBuilder();
		           for(Text text : fragments){
		               nameTmp.append(text);
		           }
		           //将高亮片段组装到结果中去
		           source.put("info", nameTmp.toString());
		       }
		   }
		   SearchHits hits = response.getHits();
		   SearchHit[] searchHits = hits.getHits();
		   // 组装返回结果
		   for (SearchHit hit : searchHits) {
		       JSONObject jsonObject = new JSONObject(hit.getSourceAsMap());
		       blogList.add(jsonObject);
		   }
   } catch (IOException e) {   }
   return blogList;
}

检索结果,明显看出"济南高新区"按照汉语语法被分解成"济南"、“高新区”,分别进行适配检索和高亮显示,同一个返回字段中,有多个"高新区",全部会高亮显示
在这里插入图片描述
8、好了,至此,全部完工

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值