Problem Description
人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即"可乐"),经过多方打探,某资深Cole终于知道了原因,原来,LELE最近研究起了著名的RPG难题:
有排成一行的n个方格,用红(Red)、粉(Pink)、绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法.
以上就是著名的RPG难题.
如果你是Cole,我想你一定会想尽办法帮助LELE解决这个问题的;如果不是,看在众多漂亮的痛不欲生的Cole女的面子上,你也不会袖手旁观吧?
有排成一行的n个方格,用红(Red)、粉(Pink)、绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法.
以上就是著名的RPG难题.
如果你是Cole,我想你一定会想尽办法帮助LELE解决这个问题的;如果不是,看在众多漂亮的痛不欲生的Cole女的面子上,你也不会袖手旁观吧?
Input
输入数据包含多个测试实例,每个测试实例占一行,由一个整数N组成,(0<n<=50)。
Output
对于每个测试实例,请输出全部的满足要求的涂法,每个实例的输出占一行。
Sample Input
1 2
Sample Output
3 6思路:找规律:当n=1时,f(1)=3{r,p,g}当n=2时,在f(1)后添加和最后一个字符不同的字符即:f(2)={rp,rg,pr,pg,gr,gp}当n=3时,在f(2)的后面添加和最后一个不同的字符,可以得出两组{rpg,rpr,rgp,rgr,prg,prp,pgr,pgp,grp,grg,gpr,gpg}正确的一组:{rpg,rgp,prg,pgr,grp,gpr}不正确的一组:{rpr,rgr,prp,pgp,grg,gpg}不正确的用于计算f(4),因为在不正确的后面加上一个字符,可能就是正确的了。当n=4时,用n=3时正确的派生出{rpgp,rpgr,rgpg,rpgr,prgr,prgp,pgrg,pgrp,grpr,grpg,gprp,gprg}正确的一组是:{rpgp,rgpg,prgr,pgrg,grpr,gprp}不正确的一组是:{rpgr,rpgr,prgp,pgrp,grpg,gprg}用n=3不正确的派生出{rprp,rprg,rgrg,rgrp,prpr,prpg,pgpg,pgpr,grgr,grgp,gpgr,gpgp}它们都是正确的!观察不正确的,n=3时不正确的一组是由n=2正确的一组派生出来的,这一个不正确的组派生出来的用于n=4派生正确的组(全部正确f(n-2)*2),n=4时不正确的一组是由n=3正确的一组派生出来的,这一组用来派生n=5正确的,而且全部正确,依次类推得到公式f(1)=3,f(2)=6,f(3)=6,f(n)=f(n-1)+2*f(n-2)别忘了测试边界数据,要用__int64代码: