jquery-ui sortable详解

本文详细介绍了jQuery UI中的Sortable插件,包括如何使用Sortable进行元素排序,如设置appendTo、axis、cancel、classes等属性,以及connectWith、containment、cursor等功能。此外,还探讨了handle、helper、items等选项,以及各种事件如activate、sort、stop等的使用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该插件的用途:使用鼠标重新排列列表或网格中的元素。 helper   这个小伙子 总结的不错
Note: In order to sort table rows, the   tbody   must be made sortable, not the   table .//毕竟tbody是父级嘛

1、appendTo
   说实话这个属性不是甚了解,大致是appendTo父级容器// 拖拽的父级节点


2、axis  
   If defined, the items can be dragged only horizontally or vertically. Possible values:   "x" ,   "y" .

3、cancel   
    $( "#s_item2" ).sortable({
        cancel : ".cancel_me"
    });

移除sortable对某些元素的影响。拖不行


4、classes  (最新版支持) 改变原有的一些风格,这个ui-sortable是它自己生成的


5、connectWith  相互之间可以拖动了


   $(function(){
        $( "#s_item,#s_item2" ).sortable({
            connectWith : ".connect"
        });
    })
</ script >
</ head >
< body >
    < ul id = "s_item" class = "connect" >
        < li >Item 1</ li >
        < li >Item 2</ li >
        < li >Item 3</ li >
        < li >Item 4</ li >
        < li >Item 5</ li >
    </ ul >
   
    < ul id = "s_item2" class = "connect" >
        < li >Item 6</ li >
        < li >Item 7</ li >
        < li >Item 8</ li >
        < li >Item 9</ li >
        < li >Item 0</ li >
    </ ul >
   
</ body >

6、containment //规定只能在一定的范围内拖动



7、cursor //拖动过程中鼠标展示类型 (move,defualt,pointer等等)



8、cursorAt  //拖动过程中鼠标在该元素的哪个位置
  下面是left:0时候的样子



9、delay   //顾名思义,响应拖放的时候会有延迟


10、disabled  //disabled值为true  当然就失效了



11、distance //拖动要达到一定距离才开始算起


12、dropOnEmpty //如果值为false,那么就没法往空的格子里面拖放东西




13、forceHelperSize  //这个没清楚怎么个意思



14、forcePlaceholderSize //这个也不清楚



15、grid  //写了之后,将容器弄成了一个一个的小格子,一格一格的走(其实我感觉是限定了xy方向的最小步长)
  

16、handle   //目的是限制拖拽区域,只有这个区域可以用来拖拽





17、helper //在拖拽元素的时候,调用一个函数(那个clone还是没弄懂草!)
< script type = "text/javascript" >
       function damn (){
            alert( "fuckyou" );
      }
    </ script >
< script language = "javascript" type = "text/javascript" >
    $ ( function (){
        $( "#s_item,#s_item2" ).sortable({
            connectWith : ".connect" ,
            cursor : "move" ,
             disabled : false ,
             dropOnEmpty : true ,
             forceHelperSize : true ,
             handle : ".handleboy" ,
             helper : damn
                  
        });
    })
</ script >



18、items  //告诉你 下面哪种元素要排序用



19、opacity   //控制拖拽时候的透明程度


20、placeholder  //就是你移入时候 排序元素在着陆点位置的样式(实际上会给目标着陆点添加指定类)


#s_item li .holderCss { border : 1 px dashed #fc0 ; background : #fff ; }
</ style >
< script language = "javascript" type = "text/javascript" >
    $ ( function (){
        $( "#s_item" ).sortable({
            placeholder : "holderCss"
        });
       


21、revert  //降落的时候会添加过渡效果





22、scroll   //边缘滚动条问题处理  (我自己试验的时候没什么效果)




23、scrollSensitivity  (拖动元素距离滚动条多远时出现滚动条)(自己试没效果)




24、scrollSpeed (滚动条出现速度)(自己试没效果)




25、tolerance //什么时候给新进来的元素空开位子,一种是超过50%的面积占用  第二种是光标进入



26、zIndex   //规定拖放时候的zindex值


接下来略去其方法直接看event事件

27、activate //开始时激活


28、beforeStop //在完全停止之前


29、change  //位置不变不会激活,中途只要位置变化就会激活



30、create //创建的时候激活,也就一开始初始化的时候激活




31、deactivate  //这个单词本意是停用   停止的时候调用




32、out  //成员从一个表格离去的时候(这个有点儿诡异,会莫名搞两次出来)



33、over  //进入到一个新列表的时候(也会触发两次)



34、receive  //完全落入另外一个列表时激活(在stop和deactivate之间)



35、remove // 在接受与beforestop中间




36、sort   //几乎每一小点儿的移动都会触发





37、start //start这个动作在所有动作之前(我观察到的所有动作之前)


38、stop  //stop这个动作在所有动作之后(几乎)




39、update   // 位置改变了才会激活  介于receive和deactivate之间


至此,基本上接触到的都介绍完了









在 Python 中,可以使用 statsmodels 模块中的 OLS 类来进行OLS回归模型的拟合和预测。下面是一个简单的示例代码: ```python import numpy as np import pandas as pd import statsmodels.api as sm # 生成随机数据 np.random.seed(123) X = np.random.rand(100) Y = 2*X + 0.5 + np.random.normal(0, 0.1, 100) # 将数据存放在DataFrame对象中 data = pd.DataFrame({'X': X, 'Y': Y}) # 添加截距项 data = sm.add_constant(data) # 拟合OLS回归模型 model = sm.OLS(data['Y'], data[['const', 'X']]) result = model.fit() # 输出回归结果 print(result.summary()) ``` 在上面的代码中,我们首先生成了一个简单的随机数据集,其中 X 是自变量,Y 是因变量。然后,我们将数据存放在了一个 pandas 的 DataFrame 对象中,并使用 sm.add_constant() 函数添加了截距项。接着,我们使用 sm.OLS() 函数拟合了OLS回归模型,并将结果保存在了 result 变量中。最后,我们使用 result.summary() 方法输出了回归结果的详细信息。 需要注意的是,在使用 statsmodels 进行OLS回归模型拟合时,需要显式地添加截距项,否则结果会有偏差。此外,我们还可以使用 result.predict() 方法来进行预测,即: ```python # 进行预测 new_data = pd.DataFrame({'X': [0.1, 0.2, 0.3]}) new_data = sm.add_constant(new_data) prediction = result.predict(new_data) # 输出预测结果 print(prediction) ``` 在上面的代码中,我们首先生成了一个新的数据集 new_data,然后使用 result.predict() 方法对其进行预测,并将结果保存在了 prediction 变量中。最后,我们使用 print() 函数输出了预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值