Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
Example 1:
Input: [7, 1, 5, 3, 6, 4]
Output: 5
max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)
Example 2:
Input: [7, 6, 4, 3, 1]
Output: 0
In this case, no transaction is done, i.e. max profit = 0.
解答:典型的动态规划问题,新建一个数组opt[], opt[i]表示第i天获取的最大利润,opt[0]为0,opt[i]为当前值与之前最小值的差,如果当前值小于之前所有的值,opt[i]为0;
public class Solution {
public int maxProfit(int[] prices) {
if(prices == null || prices.length < 2){
return 0;
}
int[] opt = new int[prices.length];//opt[i]为当i天获取的最大利润
opt[0] = 0;
int low = prices[0];
for(int i = 1; i < prices.length ; i++){
if(prices[i] < low){
low = prices[i];
}
if(prices[i] > low){
opt[i] = prices[i] - low;
}else{
opt[i] = 0;
}
}
int max = 0;
for(int i = 0; i < prices.length; i++){
if(opt[i] > max){
max = opt[i];
}
}
return max;
}
}