微生物增殖
假设有两种微生物 X 和 Y X出生后每隔3分钟分裂一次(数目加倍),Y出生后每隔2分钟分裂一次(数目加倍)。 一个新出生的X,半分钟之后吃掉1个Y,并且,从此开始,每隔1分钟吃1个Y。 现在已知有新出生的 X=10, Y=89,求60分钟后Y的数目。 如果X=10,Y=90 呢? 本题的要求就是写出这两种初始条件下,60分钟后Y的数目。 题目的结果令你震惊吗?这不是简单的数字游戏!真实的生物圈有着同样脆弱的性质!也许因为你消灭的那只 Y 就是最终导致 Y 种群灭绝的最后一根稻草!
#include <iostream>
#include <cstdio>
int main()
{
int x, y;
scanf("%d %d", &x, &y);
for (int i = 1; i <= 120; ++i)
{
if (i % 4 == 0)
y *= 2;
if (i % 6 == 0)
x *= 2;
if (i % 2)
y -= x;
}
if (y < 0)
y = 0;
printf("%d %d\n",x, y);
return 0;
}
二、古堡算式
福尔摩斯到某古堡探险,看到门上写着一个奇怪的算式:
ABCDE * ? = EDCBA
他对华生说:“ABCDE应该代表不同的数字,问号也代表某个数字!”
华生:“我猜也是!”
于是,两人沉默了好久,还是没有算出合适的结果来。
请你利用计算机的优势,找到破解的答案。
把 ABCDE 所代表的数字写出来。
答案写在“解答.txt”中,不要写在这里!
参考答案:21978
#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
int a,b,c,d,e,k,m,n;
for(a=1;a<10;a++)
for(b=0;b<10;b++)
for(c=0;c<10;c++)
for(d=0;d<10;d++)
for(e=0;e<10;e++)
{ m=10000*a+1000*b+100*c+10*d+e;
n=10000*e+1000*d+100*c+10*b+a;
for(k=2;k<10;k++)
if((m*k)==n)
printf("%d %d\n",k,m);
}
return 0;
}
第三题:
比酒量
有一群海盗(不多于20人),在船上比拼酒量。过程如下:打开一瓶酒,所有在场的人平分喝下,有几个人倒下了。再打开一瓶酒平分,又有倒下的,再次重复...... 直到开了第4瓶酒,坐着的已经所剩无几,海盗船长也在其中。当第4瓶酒平分喝下后,大家都倒下了。
等船长醒来,发现海盗船搁浅了。他在航海日志中写到:“......昨天,我正好喝了一瓶.......奉劝大家,开船不喝酒,喝酒别开船......”
请你根据这些信息,推断开始有多少人,每一轮喝下来还剩多少人。
如果有多个可能的答案,请列出所有答案,每个答案占一行。
格式是:人数,人数,...
例如,有一种可能是:20,5,4,2,0
最后将结果排序写在txt里面
#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
int a,b,c,d,e,k,m,n;
for(a=2;a<=17;a++)
for(b=a+1;b<=18;b++)
for(c=b+1;c<=19;c++)
for(d=c+1;d<=20;d++)
{
if(a*b*c+a*b*d+a*c*d+b*c*d==a*b*c*d)
printf("%d %d %d %d\n",d,c,b,a);
}
return 0;
}
第四题:
奇怪的比赛
某电视台举办了低碳生活大奖赛。题目的计分规则相当奇怪:
每位选手需要回答10个问题(其编号为1到10),越后面越有难度。答对的,当前分数翻倍;答错了则扣掉与题号相同的分数(选手必须回答问题,不回答按错误处理)。
每位选手都有一个起步的分数为10分。
某获胜选手最终得分刚好是100分,如果不让你看比赛过程,你能推断出他(她)哪个题目答对了,哪个题目答错了吗?
如果把答对的记为1,答错的记为0,则10个题目的回答情况可以用仅含有1和0的串来表示。例如:0010110011 就是可能的情况。
你的任务是算出所有可能情况。每个答案占一行。
#include <iostream>
#include <cstdio>
using namespace std;
int record[11];
void dfs(int i,int score)
{
if(score<0)
return;
if(i==11)//这里应该是11,而不是10
{
if(score==100)
{for(int k=1;k<=10;k++)
printf("%d",record[k]);
printf("\n");
}
return;
}
record[i]=0;
dfs(i+1,score-i);
record[i]=1;
dfs(i+1,score*2);
}
int main()
{
int score=10;
dfs(1,10);
return 0;
}
第七题:
放旗子
今有 6 x 6 的棋盘格。其中某些格子已经预先放好了棋子。现在要再放上去一些,使得:每行每列都正好有3颗棋子(如图【1.jpg】)。我们希望推算出所有可能的放法。下面的代码就实现了这个功能。
初始数组中,“1”表示放有棋子,“0”表示空白。
int N = 0;
bool CheckStoneNum(int x[][6])
{
for(int k=0; k<6; k++)
{
int NumRow = 0;
int NumCol = 0;
for(int i=0; i<6; i++)
{
if(x[k][i]) NumRow++;
if(x[i][k]) NumCol++;
}
if(_____________________) return false; // 填空
}
return true;
}
int GetRowStoneNum(int x[][6], int r)
{
int sum = 0;
for(int i=0; i<6; i++) if(x[r][i]) sum++;
return sum;
}
int GetColStoneNum(int x[][6], int c)
{
int sum = 0;
for(int i=0; i<6; i++) if(x[i][c]) sum++;
return sum;
}
void show(int x[][6])
{
for(int i=0; i<6; i++)
{
for(int j=0; j<6; j++) printf("%2d", x[i][j]);
printf("\n");
}
printf("\n");
}
void f(int x[][6], int r, int c);
void GoNext(int x[][6], int r, int c)
{
if(c<6)
_______________________; // 填空
else
f(x, r+1, 0);
}
void f(int x[][6], int r, int c)
{
if(r==6)
{
if(CheckStoneNum(x))
{
N++;
show(x);
}
return;
}
if(______________) // 已经放有了棋子
{
GoNext(x,r,c);
return;
}
int rr = GetRowStoneNum(x,r);
int cc = GetColStoneNum(x,c);
if(cc>=3) // 本列已满
GoNext(x,r,c);
else if(rr>=3) // 本行已满
f(x, r+1, 0);
else
{
x[r][c] = 1;
GoNext(x,r,c);
x[r][c] = 0;
if(!(3-rr >= 6-c || 3-cc >= 6-r)) //本行或本列严重缺子,则本格不能空着!
GoNext(x,r,c);
}
}
int main(int argc, char* argv[])
{
int x[6][6] =
{
{1,0,0,0,0,0},
{0,0,1,0,1,0},
{0,0,1,1,0,1},
{0,1,0,0,1,0},
{0,0,0,1,0,0},
{1,0,1,0,0,1}
};
f(x, 0, 0);
printf("%d\n", N);
return 0;
}
第八题:
密码发生器
在对银行账户等重要权限设置密码的时候,我们常常遇到这样的烦恼:如果为了好记用生日吧,容易被破解,不安全;如果设置不好记的密码,又担心自己也会忘记;如果写在纸上,担心纸张被别人发现或弄丢了...
这个程序的任务就是把一串拼音字母转换为6位数字(密码)。我们可以使用任何好记的拼音串(比如名字,王喜明,就写:wangximing)作为输入,程序输出6位数字。
变换的过程如下:
第一步. 把字符串6个一组折叠起来,比如wangximing则变为:
wangxi
ming
第二步. 把所有垂直在同一个位置的字符的ascii码值相加,得出6个数字,如上面的例子,则得出:
228 202 220 206 120 105
第三步. 再把每个数字“缩位”处理:就是把每个位的数字相加,得出的数字如果不是一位数字,就再缩位,直到变成一位数字为止。例如: 228 => 2+2+8=12 => 1+2=3
上面的数字缩位后变为:344836, 这就是程序最终的输出结果!
要求程序从标准输入接收数据,在标准输出上输出结果。
输入格式为:第一行是一个整数n(<100),表示下边有多少输入行,接下来是n行字符串,就是等待变换的字符串。
输出格式为:n行变换后的6位密码。
例如,输入:
5
zhangfeng
wangximing
jiujingfazi
woaibeijingtiananmen
haohaoxuexi
则输出:
772243
344836
297332
716652
875843
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
char str[102];
int solve(int n)
{
int t;
while(1)
{
t=0;
while(n>0)
{
t+=n%10;
n/=10;
}
if(t<10)return t;
n=t;
}
}
int main()
{
int len,n,i,j;
//printf("%d",sizeof(num));
int num[6];
scanf("%d",&n);
while(n--)
{
scanf("%s",str);
len=strlen(str);
memset(num,0,sizeof(num));
for(i=0; i<6; i++)
{
for(j=i; j<len; j+=6)
{
num[i]+=str[j];
}
}
for(i=0; i<6; i++)
{
printf("%d",solve(num[i]));
}
printf("\n");
}
return 0;
}
第九题:
夺冠概率
足球比赛具有一定程度的偶然性,弱队也有战胜强队的可能。
假设有甲、乙、丙、丁四个球队。根据他们过去比赛的成绩,得出每个队与另一个队对阵时取胜的概率表:
甲 乙 丙 丁
甲 - 0.1 0.3 0.5
乙 0.9 - 0.7 0.4
丙 0.7 0.3 - 0.2
丁 0.5 0.6 0.8 -
数据含义:甲对乙的取胜概率为0.1,丙对乙的胜率为0.3,...
现在要举行一次锦标赛。双方抽签,分两个组比,获胜的两个队再争夺冠军。(参见【1.jpg】)
请你进行10万次模拟,计算出甲队夺冠的概率。
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
int main()
{
int pk[4][4] =
{
{0,1,3,5},
{9,0,7,4},
{7,3,0,2},
{5,6,8,0}
};
int i,a,a1,b,b1,k,count=0;
srand(time(NULL));
for(i=0; i<100000; i++)
{
a1 = rand()%3 + 1 ;//a的对手
if(rand()%10<pk[0][a1]) //a胜
{
switch(a1)
{
case 1:
b = 2 ;
b1 = 3 ;
break;
case 2:
b = 1 ;
b1 = 3 ;
break;
default:
b = 1 ;
b1 = 2 ;
}
if(rand()%10<pk[b][b1]) //b胜
{
a1 = b ;
}
else //b1胜a
{
a1 = b1 ;
}
if(rand()%10<pk[0][a1]) //a胜
{
count++;
}
}
}
printf("%f\n",count*1.0/100000);
return 0;
}
第十题:
取球游戏
今盒子里有n个小球,A、B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断。我们约定:每个人从盒子中取出的球的数目必须是:1,3,7或者8个。轮到某一方取球时不能弃权!A先取球,然后双方交替取球,直到取完。被迫拿到最后一个球的一方为负方(输方)请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?
程序运行时,从标准输入获得数据,其格式如下:
先是一个整数n(n<100),表示接下来有n个整数。然后是n个整数,每个占一行(整数<10000),表示初始球数。
程序则输出n行,表示A的输赢情况(输为0,赢为1)。
例如,用户输入:
4
1
2
10
18
则程序应该输出:
0
1
1
0
博弈题,要找到必胜点和必败点。
/*动态规划 基于前面的状态,找出我是否win 或者 输 (“我”是指先取数的人)*/
#include<stdio.h>
#include<stdlib.h>
#include<stdlib.h>
// 0 1 2 3 4 5 6 7 8 9 10
bool flag[10002]= {0,0,1,0,1,0,1,0,1,0,1 };
int b[4]= {1,3,7,8};
int main()
{
int i,j,test;
for(i=11; i<10002; i++)
{
for(j=0 ; j<4 ; j++ )
{
//只要找到上一个状态存在一个是必输的(可能也存在必赢得状态),那么加上一次,我一定赢)
if(flag[i-b[j]]==0)
{
flag[i] = 1 ;
break;
}
}
//如果找不到,就说明我上一个状态都是必胜,再加上一次那我必输;则flag[i]=0;
}
for(i=1;i<1000;i++)
{ printf("%d ",flag[i]);
if(i%15==0)
printf("\n");
}
int n;
scanf("%d",&n);
while(n--)
{
scanf("%d",&test);
printf("%d\n",flag[test]);
}
return 0;
}
经过测试可以找出规律:
经过简化,代码如下:
#include<stdio.h>
#include<stdlib.h>
// 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5
bool flag[10002]= {0,0,1,0,1,0,1,0,1,0,1 ,1,1,1,1,1};
int main()
{
int n,test;
scanf("%d",&n);
while(n--)
{
scanf("%d",&test);
if(test==1)
{
printf("0\n");continue;
}
printf("%d\n",flag[(test-1)%15+1]);
}
return 0;
}