2012蓝桥杯 初赛解题报告

第一题:

微生物增殖

假设有两种微生物 X 和 Y    X出生后每隔3分钟分裂一次(数目加倍),Y出生后每隔2分钟分裂一次(数目加倍)。    一个新出生的X,半分钟之后吃掉1个Y,并且,从此开始,每隔1分钟吃1个Y。    现在已知有新出生的 X=10, Y=89,求60分钟后Y的数目。    如果X=10,Y=90  呢?    本题的要求就是写出这两种初始条件下,60分钟后Y的数目。    题目的结果令你震惊吗?这不是简单的数字游戏!真实的生物圈有着同样脆弱的性质!也许因为你消灭的那只 Y 就是最终导致 Y 种群灭绝的最后一根稻草!

#include <iostream>
#include <cstdio>
int main()
{
    int x, y;
    scanf("%d %d", &x, &y);
    for (int i = 1; i <= 120; ++i)
    {
        if (i % 4 == 0)
            y *= 2;
        if (i % 6 == 0)
            x *= 2;
        if (i % 2)
           y -= x;
    }
    if (y < 0)                  
    y = 0;
   printf("%d %d\n",x, y);
   return 0;
}

 

二、古堡算式
 
福尔摩斯到某古堡探险,看到门上写着一个奇怪的算式:
ABCDE * ? = EDCBA
他对华生说:“ABCDE应该代表不同的数字,问号也代表某个数字!”
华生:“我猜也是!”
于是,两人沉默了好久,还是没有算出合适的结果来。
请你利用计算机的优势,找到破解的答案。
把 ABCDE 所代表的数字写出来。
答案写在“解答.txt”中,不要写在这里!
参考答案:21978

#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
   int a,b,c,d,e,k,m,n;
   for(a=1;a<10;a++)
      for(b=0;b<10;b++)
       for(c=0;c<10;c++)
        for(d=0;d<10;d++)
         for(e=0;e<10;e++)
         {  m=10000*a+1000*b+100*c+10*d+e;
            n=10000*e+1000*d+100*c+10*b+a;
            for(k=2;k<10;k++)
               if((m*k)==n)
                  printf("%d %d\n",k,m);
         }
   return 0;
}


 第三题:

比酒量
    有一群海盗(不多于20人),在船上比拼酒量。过程如下:打开一瓶酒,所有在场的人平分喝下,有几个人倒下了。再打开一瓶酒平分,又有倒下的,再次重复...... 直到开了第4瓶酒,坐着的已经所剩无几,海盗船长也在其中。当第4瓶酒平分喝下后,大家都倒下了。

    等船长醒来,发现海盗船搁浅了。他在航海日志中写到:“......昨天,我正好喝了一瓶.......奉劝大家,开船不喝酒,喝酒别开船......”

    请你根据这些信息,推断开始有多少人,每一轮喝下来还剩多少人。

    如果有多个可能的答案,请列出所有答案,每个答案占一行。

    格式是:人数,人数,...

    例如,有一种可能是:20,5,4,2,0

 最后将结果排序写在txt里面

#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
   int a,b,c,d,e,k,m,n;
   for(a=2;a<=17;a++)
      for(b=a+1;b<=18;b++)
       for(c=b+1;c<=19;c++)
        for(d=c+1;d<=20;d++)
         {
            if(a*b*c+a*b*d+a*c*d+b*c*d==a*b*c*d)
               printf("%d %d %d %d\n",d,c,b,a);
         }
   return 0;
}

 第四题:

奇怪的比赛
    某电视台举办了低碳生活大奖赛。题目的计分规则相当奇怪:

    每位选手需要回答10个问题(其编号为1到10),越后面越有难度。答对的,当前分数翻倍;答错了则扣掉与题号相同的分数(选手必须回答问题,不回答按错误处理)。

    每位选手都有一个起步的分数为10分。

    某获胜选手最终得分刚好是100分,如果不让你看比赛过程,你能推断出他(她)哪个题目答对了,哪个题目答错了吗?

    如果把答对的记为1,答错的记为0,则10个题目的回答情况可以用仅含有1和0的串来表示。例如:0010110011 就是可能的情况。

    你的任务是算出所有可能情况。每个答案占一行。

#include <iostream>
#include <cstdio>
using namespace std;
int record[11];
void dfs(int i,int score)
{
   if(score<0)
   return;
   if(i==11)//这里应该是11,而不是10
   {
     if(score==100)
     {for(int k=1;k<=10;k++)
       printf("%d",record[k]);
       printf("\n");
     }
     return;
   }
   record[i]=0;
   dfs(i+1,score-i);
   record[i]=1;
   dfs(i+1,score*2);
}
int main()
{
   int score=10;
   dfs(1,10);
   return 0;
}

第七题:

放旗子

今有 6 x 6 的棋盘格。其中某些格子已经预先放好了棋子。现在要再放上去一些,使得:每行每列都正好有3颗棋子(如图【1.jpg】)。我们希望推算出所有可能的放法。下面的代码就实现了这个功能。

    初始数组中,“1”表示放有棋子,“0”表示空白。   

int N = 0;
bool CheckStoneNum(int x[][6])
{
    for(int k=0; k<6; k++)
    {
        int NumRow = 0;
        int NumCol = 0;
        for(int i=0; i<6; i++)
        {
            if(x[k][i]) NumRow++;
            if(x[i][k]) NumCol++;
        }
        if(_____________________) return false;  // 填空
    }
    return true;
}
int GetRowStoneNum(int x[][6], int r)
{
    int sum = 0;
    for(int i=0; i<6; i++)  if(x[r][i]) sum++;
    return sum;
}
int GetColStoneNum(int x[][6], int c)
{
    int sum = 0;
    for(int i=0; i<6; i++)  if(x[i][c]) sum++;
    return sum;
}
void show(int x[][6])
{
    for(int i=0; i<6; i++)
    {
        for(int j=0; j<6; j++) printf("%2d", x[i][j]);
        printf("\n");
    }
    printf("\n");
}
void f(int x[][6], int r, int c);
void GoNext(int x[][6],  int r,  int c)
{
    if(c<6)
        _______________________;   // 填空
    else
        f(x, r+1, 0);
}
void f(int x[][6], int r, int c)
{
    if(r==6)
    {
        if(CheckStoneNum(x))
        {
            N++;
            show(x);
        }
        return;
    }
    if(______________)  // 已经放有了棋子
    {
        GoNext(x,r,c);
        return;
    }

    int rr = GetRowStoneNum(x,r);
    int cc = GetColStoneNum(x,c);
    if(cc>=3)  // 本列已满
        GoNext(x,r,c);
    else if(rr>=3)  // 本行已满
        f(x, r+1, 0);
    else
    {
        x[r][c] = 1;
        GoNext(x,r,c);
        x[r][c] = 0;

        if(!(3-rr >= 6-c || 3-cc >= 6-r))  //本行或本列严重缺子,则本格不能空着!
            GoNext(x,r,c);
    }
}
int main(int argc, char* argv[])
{
    int x[6][6] =
    {
        {1,0,0,0,0,0},
        {0,0,1,0,1,0},
        {0,0,1,1,0,1},
        {0,1,0,0,1,0},
        {0,0,0,1,0,0},
        {1,0,1,0,0,1}
    };
    f(x, 0, 0);

    printf("%d\n", N);
    return 0;
}


第八题:

密码发生器

在对银行账户等重要权限设置密码的时候,我们常常遇到这样的烦恼:如果为了好记用生日吧,容易被破解,不安全;如果设置不好记的密码,又担心自己也会忘记;如果写在纸上,担心纸张被别人发现或弄丢了...

这个程序的任务就是把一串拼音字母转换为6位数字(密码)。我们可以使用任何好记的拼音串(比如名字,王喜明,就写:wangximing)作为输入,程序输出6位数字。

变换的过程如下:

第一步. 把字符串6个一组折叠起来,比如wangximing则变为:
wangxi
ming

第二步. 把所有垂直在同一个位置的字符的ascii码值相加,得出6个数字,如上面的例子,则得出:
228 202 220 206 120 105

第三步. 再把每个数字“缩位”处理:就是把每个位的数字相加,得出的数字如果不是一位数字,就再缩位,直到变成一位数字为止。例如: 228 => 2+2+8=12 => 1+2=3

上面的数字缩位后变为:344836, 这就是程序最终的输出结果!

要求程序从标准输入接收数据,在标准输出上输出结果。

输入格式为:第一行是一个整数n(<100),表示下边有多少输入行,接下来是n行字符串,就是等待变换的字符串。
输出格式为:n行变换后的6位密码。

例如,输入:
5

zhangfeng
wangximing
jiujingfazi
woaibeijingtiananmen
haohaoxuexi

则输出:
772243
344836
297332
716652
875843

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
char str[102];
int solve(int n)
{
    int t;
    while(1)
    {
        t=0;
        while(n>0)
        {
            t+=n%10;
            n/=10;
        }
        if(t<10)return t;
        n=t;
    }
}
int main()
{
    int len,n,i,j;
//printf("%d",sizeof(num));
    int num[6];
    scanf("%d",&n);
    while(n--)
    {
        scanf("%s",str);
        len=strlen(str);
        memset(num,0,sizeof(num));
        for(i=0; i<6; i++)
        {
            for(j=i; j<len; j+=6)
            {
                num[i]+=str[j];
            }
        }
        for(i=0; i<6; i++)
        {
            printf("%d",solve(num[i]));
        }
        printf("\n");
    }
    return 0;
}

第九题:
夺冠概率
足球比赛具有一定程度的偶然性,弱队也有战胜强队的可能。
假设有甲、乙、丙、丁四个球队。根据他们过去比赛的成绩,得出每个队与另一个队对阵时取胜的概率表:
甲 乙 丙 丁 
甲 - 0.1 0.3 0.5
乙 0.9 - 0.7 0.4 
丙 0.7 0.3 - 0.2
丁 0.5 0.6 0.8 -
数据含义:甲对乙的取胜概率为0.1,丙对乙的胜率为0.3,...
现在要举行一次锦标赛。双方抽签,分两个组比,获胜的两个队再争夺冠军。(参见【1.jpg】)
请你进行10万次模拟,计算出甲队夺冠的概率。

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

int  main()
{
    int pk[4][4] =
    {
        {0,1,3,5},
        {9,0,7,4},
        {7,3,0,2},
        {5,6,8,0}
    };
    int i,a,a1,b,b1,k,count=0;
    srand(time(NULL));
    for(i=0; i<100000; i++)
    {
        a1 = rand()%3 + 1 ;//a的对手
        if(rand()%10<pk[0][a1]) //a胜
        {
            switch(a1)
            {
            case 1:
                b = 2 ;
                b1 = 3 ;
                break;
            case 2:
                b = 1 ;
                b1 = 3 ;
                break;
            default:
                b = 1 ;
                b1 = 2 ;
            }

            if(rand()%10<pk[b][b1]) //b胜
            {
                a1 = b ;
            }
            else //b1胜a
            {
                a1 = b1 ;
            }
            if(rand()%10<pk[0][a1]) //a胜
            {
                count++;
            }
        }
    }
    printf("%f\n",count*1.0/100000);
     return 0;
}

第十题:
取球游戏
今盒子里有n个小球,A、B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断。我们约定:每个人从盒子中取出的球的数目必须是:1,3,7或者8个。轮到某一方取球时不能弃权!A先取球,然后双方交替取球,直到取完。被迫拿到最后一个球的一方为负方(输方)请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?
程序运行时,从标准输入获得数据,其格式如下:
先是一个整数n(n<100),表示接下来有n个整数。然后是n个整数,每个占一行(整数<10000),表示初始球数。
程序则输出n行,表示A的输赢情况(输为0,赢为1)。

例如,用户输入:
4
1
2
10
18

    则程序应该输出:
0
1
1
0

博弈题,要找到必胜点和必败点。

/*动态规划 基于前面的状态,找出我是否win 或者 输 (“我”是指先取数的人)*/
#include<stdio.h>
#include<stdlib.h>
#include<stdlib.h>
//				   0 1 2 3 4 5 6 7 8 9 10 
bool flag[10002]= {0,0,1,0,1,0,1,0,1,0,1 };
int b[4]= {1,3,7,8};
int  main()
{
    int i,j,test;
    for(i=11; i<10002; i++)
    {
        for(j=0 ; j<4 ; j++ )
        {
//只要找到上一个状态存在一个是必输的(可能也存在必赢得状态),那么加上一次,我一定赢)
			if(flag[i-b[j]]==0)
            {
                flag[i] = 1 ;
                break;
            }
        }
//如果找不到,就说明我上一个状态都是必胜,再加上一次那我必输;则flag[i]=0;
    }
	for(i=1;i<1000;i++)
	{	printf("%d ",flag[i]);
	  if(i%15==0)
		printf("\n");
	}
	int n;
	scanf("%d",&n);
	while(n--)
	{
	  scanf("%d",&test);
	  printf("%d\n",flag[test]);
	}
    return 0;
}
经过测试可以找出规律:


经过简化,代码如下

#include<stdio.h>
#include<stdlib.h>
//				   0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5
bool flag[10002]= {0,0,1,0,1,0,1,0,1,0,1 ,1,1,1,1,1};
int  main()
{
	int n,test;
	scanf("%d",&n);
	while(n--)
	{
	  scanf("%d",&test);
	  if(test==1)
	  {
	      printf("0\n");continue;
	  }
	  printf("%d\n",flag[(test-1)%15+1]);
	}
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值