Logistic模型和SVM很像,现在大概说一下两者的区别
① 寻找最优超平面的方法不同
形象点说,Logistic模型找的那个超平面,是尽量让所有点都远离它,而SVM寻找的那个超平面,是只让最靠近中间分割线的那些点尽量远离,即只用到那些“支持向量”的样本——所以叫“支持向量机”。
② SVM可以处理非线性的情况
比Logistic更强大的是,SVM还可以处理非线性的情况。
③Logistic regression 和 SVM本质不同在于loss function的不同,Logistic regression的损失函数是 cross entropy loss, SVM是hinge loss,Adaboost的损失函数是 exponential loss 。常见的回归模型通常用均方误差 loss。
在Andrew NG的课里讲到过:
1. 如果Feature的数量很大,跟样本数量差不多,这时候选用LR或者是Linear Kernel的SVM
2. 如果Feature的数量比较小,样本数量一般,不算大也不算小,选用SVM+Gaussian Kernel
3. 如果Feature的数量比较小,而样本数量很多,需要手工添加一些feature变成第一种情况
PS: loss function
http://image.diku.dk/shark/sphinx_pages/build/html/rest_sources/tutorials/concepts/library_design/losses.html(下图一和图四来源)
loss function -from-李航《统计学习方法》
risk function-from-李航《统计学习方法》
cost function 和 loss function
本文探讨了Logistic Regression与Support Vector Machine(SVM)的主要区别。Logistic模型寻找使所有点远离的超平面,而SVM仅关注支持向量,尤其适用于非线性问题。损失函数是两者本质不同的关键,Logistic Regression使用交叉熵损失,SVM则采用间隔损失。在实际应用中,根据特征数量和样本数量,选择不同的模型,如LR在特征与样本数量相近时适用,SVM+高斯核在特征较少的情况下适合样本数量一般的场景。
530

被折叠的 条评论
为什么被折叠?



