- 博客(2)
- 收藏
- 关注
原创 为什么我的网络不管输入什么都预测成同一个类别——考古有感
结果最近在进行部分cv算法的考古,已经扒到了googlelenetv1,复现完在cifar100上浅跑了10轮,发现交叉熵岿然不动,并且验证集所有图片的预测类别全部是23(准确率当然就是1%钉死),查阅了半天csdn发现无外乎也就那三种说法——看看数据集,看看网络结构,看看损失函数,那这三个都没问题怎么办?,奇迹发生了,但是只发生了一部分,10轮后的准确率来到了8%,可能跟LRN层先天局限以及帖主完全不通参数配置又懒得调参有关,但终于不是1%了,当然都8%了输出肯定不会像之前那样全都是一个类别。
2024-10-17 22:32:21 736
原创 YOLO调参后结果波动大的一个可能原因
采用1e-3这种偏大的学习率时,尚且能够部分抵消这巨大的惯性,因而表现出剧烈的震荡,当改用3e-4这种偏小的学习率时,甚至无法短时间内抵消这份惯性,随着学习率的衰减,自然而然便陷入了局部最优。直到后面看到这个图,发现warmup对网络的收敛性能影响比想象中的大很多,于是细致地过了一遍超参数,发现原始网络的warmup_bias_lr为0.1,在使用AdamW的情况下这显然高到无法接受,于是果断改0.01,验证集波动的情况有了较大的缓解(如下图),至少是稳步上升的情况。学习率换3e-4的时候也可以正常收敛。
2024-02-09 18:02:53 992
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人