【Java数据结构】用Java模拟实现堆,详解priorityQueue接口的使用

堆的概念

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

注意:

  • 堆中某个节点的值总是不大于或不小于其父节点的值。
  • 堆总是一棵完全二叉树。
  • 大根堆的每一个父节点的值都比其子节点要大。
  • 小根堆的每一个父节点的值都要比其子节点要小。

由图可见:大根堆的根节点的值就是整个堆中最大的值,反之小根堆的根节点就是最小的值。

堆的存储方式

从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储

注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。

将元素存储到数组中后,可以根据二叉树章节的性质5对树进行还原。假设i为节点在数组中的下标,则有:

  • 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
  • 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
  • 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子

我们发现一个父节点的 下标*2 + 1 就是左孩子的下标,下标*2 + 2 就是右孩子的下标。而左右孩子的 (下标 - 1)/ 2 就是父节点的下标。这个结论对我们后面模拟实现堆很重要!

堆的创建

我们知道堆分大根堆和小根堆,大根堆的每一个父节点的值都比其子节点要大,小根堆的每一个父节点的值都要比其子节点要小,那么我们就可以随机给定一个数组,来创建成堆。

 1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)

2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在

  • 判断parent右孩子是否存在,存在找到左右孩子中最大的孩子,让child指向最大的孩子
  • 将parent与较大的孩子child比较,如果:parent大于较大的孩子child,调整结束。否则:交换parent与较小的孩子child的值,交换完成之后,parent中大的元素向下移动,可能导致子
    树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续执行操作2。

代码实现:

首先让parent指向最后一个节点的父节点 parent = (usedSize -1 -1) / 2,然后从此节点开始比较。

    //让parent从最后的节点的父节点开始
    public void createHeap(){
        for (int parent = (this.usedSize-1-1)/2; parent >= 0; parent--) {
            shiftDown(parent,usedSize);
        }
    }
    //调整的过程
    private void shiftDown(int parent, int usedSize) {
        int child = parent*2+1;
        while(child < usedSize) {
            if (child+1 < usedSize && this.elem[child + 1] > this.elem[child]) {
                child = child + 1;
            }
            if (this.elem[parent] < this.elem[child]) {
                int tmp = this.elem[child];
                this.elem[child] = this.elem[parent];
                this.elem[parent] = tmp;
                parent = child;
                child = parent*2+1;
            }else{
                break;
            }
        }
    }

我们以数组{ 27,15,19,18,28,34,65,49,25,37 }来测试该代码。

测试结果:

很明显调整后的结果符合大根堆了。

注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。
时间复杂度分析:最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(\log _{2}^{n})

创建堆的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

因此创建堆的时间复杂度是O(N)

 堆的插入和删除的模拟实现

堆的插入

堆的插入总共需要两个步骤:
1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)
2. 将最后新插入的节点向上调整,直到满足堆的性质

代码实现:

    public void offer(int val){
        //空间不足时扩容
        if(this.usedSize == this.elem.length){
            this.elem = Arrays.copyOf(elem,2*elem.length);
        }
        this.elem[this.usedSize] = val;
        this.usedSize++;
        int child = this.usedSize;
        int parent = (child-1)/2;
        while(child != 0){
            if(this.elem[child] > this.elem[parent]){
                int tmp = this.elem[child];
                this.elem[child] = this.elem[parent];
                this.elem[parent] = tmp;
                child = parent;
                parent = (child-1)/2;
            }else{
                return;
            }
        }
    }

堆的删除

注意:堆的删除一定删除的是堆顶元素。具体如下:
1. 将堆顶元素对堆中最后一个元素交换
2. 将堆中有效数据个数减少一个
3. 对堆顶元素进行向下调整

代码实现: 

    public int poll(){
        int ret = this.elem[0];//保留堆顶元素,以便返回
        //将堆顶元素与最后一个元素交换
        int tmp = this.elem[0];
        this.elem[0] = this.elem[this.usedSize-1];
        this.elem[this.usedSize-1] = tmp;
        //堆中的元素数量减一
        this.usedSize--;
        //调用方法向下调整
        shiftDown(0,usedSize);
        return ret;
    }
    private void shiftDown(int parent, int usedSize) {
        int child = parent*2+1;
        while(child < usedSize) {
            if (child+1 < usedSize && this.elem[child + 1] > this.elem[child]) {
                child = child + 1;
            }
            if (this.elem[parent] < this.elem[child]) {
                int tmp = this.elem[child];
                this.elem[child] = this.elem[parent];
                this.elem[parent] = tmp;
                parent = child;
                child = parent*2+1;
            }else{
                break;
            }
        }
    }

 优先级队列

我们之前学过队列,队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列,该中场景下,使用队列显然不合适,那我们就要使用优先级队列,优先级队列的底层就是堆,通过堆来实现把优先级高的元素放到堆顶,以便于优先级高的元素先出队列,在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。

注意:

  • 1.优先级队列时优先级高的元素先出队列。
  • 2.优先级队列的底层是通过堆来实现的。

常用接口介绍

Java集合框架中提供了PriorityQueuePriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,本文主要介绍PriorityQueue。

关于PriorityQueue的使用要注意:

1. 使用时必须导入PriorityQueue所在的包,即:

import java.util.PriorityQueue;

2. PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出
ClassCastException异常。
3. 不能插入null对象,否则会抛出NullPointerException。
4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容。
5. 插入和删除元素的时间复杂度为O(\log _{^{2}}^{n})
6. PriorityQueue底层使用了堆数据结构。
7. PriorityQueue默认情况下是小堆---即每次获取到的元素都是最小的元素。

PriorityQueue接口的常用方法介绍

构造方法

有三种构造方法:

  • PriorityQueue():创建一个空的优先级队列,默认容量是11
  • PriorityQueue(intinitialCapacity):创建一个初始容量为initialCapacity的优先级队列,注意:initialCapacity不能小于1,否则会抛IllegalArgumentException异常
  • PriorityQueue(Collection<?extends E> c):用一个集合来创建优先级队列
public class Main {
    public static void main(String[] args) {
        //创建一个空的优先级队列,默认容量是11
        PriorityQueue<Integer> priorityQueue1 = new PriorityQueue<>();

        //创建一个初始容量为initialCapacity的优先级队列,注意:initialCapacity不能小于1,否则会抛IllegalArgumentException异常
        PriorityQueue<Integer> priorityQueue2 = new PriorityQueue<>(100);

        //用一个集合来创建优先级队列
        List<Integer> list = new ArrayList<>();
        list.add(1);
        list.add(2);
        list.add(3);
        list.add(4);
        list.add(5);
        PriorityQueue<Integer> priorityQueue3 = new PriorityQueue<>(list);
    }
}

插入/删除/获取优先级最高的元素

常见操作:

  • boolean offer(E e)  插入元素e,插入成功返回true,如果e对象为空,抛出NullPointerException异常
  • E peek()  获取优先级最高的元素,如果优先级队列为空,返回null
  • E poll()  移除优先级最高的元素并返回,如果优先级队列为空,返回null
  • int size()  获取有效元素的个数
  • void clear()  清空
  • boolean isEmpty()  检测优先级队列是否为空,空返回true
public class Main {
    public static void main(String[] args) {
        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>();
        priorityQueue.offer(1);//插入元素构建优先级队列
        priorityQueue.peek();//返回队顶元素
        priorityQueue.poll();//删除队顶元素,重新构建优先级队列
        priorityQueue.size();//返回队中有效元素个数
        priorityQueue.clear();//清空优先级队列
        priorityQueue.isEmpty();//判断优先级队列是否为空
    }
}

如何使用大根堆的优先级队列

我们在使用PriorityQueue接口的时候默认在底层构建的是一个小根堆,如果当我们想用大根堆的PriorityQueue该如果操作呢?

  1. 创建一个比较器
  2. 将比较器放置于构造方法中

代码实现

//比较器
class maxCompare implements Comparator<Integer>{

    @Override
    public int compare(Integer o1, Integer o2) {
        return o2.compareTo(o1);
    }
}
public class Main {
    public static void main(String[] args) {
        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(new maxCompare());
    }
}

我们接下来测试一下:

我们发现在弹出堆顶元素的时候,这个数是堆中最大的元素,也就是说我们成功的创建了一个大根堆的PriorityQueue(优先级队列)

评论 77
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值