参数数量:
num_para=np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])
浮点运算量(mac或flops):
tf.contrib.tfprof.model_analyzer.print_model_analysis(tf.get_default_graph(), tfprof_options=tf.contrib.tfprof.model_analyzer.FLOAT_OPS_OPTIONS)
或
flops = tf.profiler.profile(tf
.default.graph(), options=tf.profiler.ProfileOptionBuilder.float_operation())
上述两种的统计结果是一致的