归并排序中对小数组采用插入排序

纯归并排序的复杂度为: O(nlgn),而纯插入排序的时间复杂度为:O(n^2)。数据量很大的时候采用归并排序

但是在n较小的时候插入排序可能运行的会更快点。因此在归并排序中当子问题变得足够小时,采用插入排序来使得递归的叶子变粗可以加快排序速度。那么这个足够小到底怎么去衡量呢? 请看下面:

这么几个我不证明了,比较简单:

A,插入排序最坏情况下可以在O(nk)时间内排序每个长度为k的n/k个子列表

B,在最坏情况下可在O(nlg(n/k))的时间内合并这些子表

C,修订后的算法的最坏情况运行时间复杂度是O(nk + nlg(n/k))

那么,O(nk+nlg(n/k))=O(nlgn).只能最大是k=O(lgn).等式左边中第一项是高阶项。k如果大于lgn,则比归并排序复杂度大了。左边可以写成nk+nlgn-nlgk,k等于lgn时,就是2nlgn-nlglgn.忽略恒定系数,则与归并排序是一样的。

最后结论:  k < lg(n)的时候,使用插入排序

 

 

from at003_insertsort import insertSort
from math import log

__author__ = 'Xiong Neng'


def mergeSort(seq):
    mergeSortRange(seq, 0, len(seq) - 1, log(len(seq)) - 1)


def mergeOrderedSeq(seq, left, middle, right):
    """
    seq: 待排序序列
    left <= middle <= right
    子数组seq[left..middle]和seq[middle+1..right]都是排好序的
    该排序的时间复杂度为O(n)
    """
    tempSeq = []
    i = left
    j = middle + 1
    while i <= middle and j <= right:
        if seq[i] <= seq[j]:
            tempSeq.append(seq[i])
            i += 1
        else:
            tempSeq.append(seq[j])
            j += 1
    if i <= middle:
        tempSeq.extend(seq[i:middle + 1])
    else:
        tempSeq.extend(seq[j:right + 1])
    seq[left:right + 1] = tempSeq[:]


def mergeSortRange(seq, start, end, threshold):
    """
    归并排序一个序列的子序列
    start: 子序列的start下标
    end: 子序列的end下标
    threshold: 待排序长度低于这个值,就采用插入排序
    """
    if end - start < threshold:
        tempSeq = seq[start: end + 1]
        insertSort(tempSeq)
        seq[start: end + 1] = tempSeq[:]
    elif start < end:  # 如果start >= end就终止递归调用
        middle = (start + end) / 2
        mergeSortRange(seq, start, middle, threshold)  # 排好左边的一半
        mergeSortRange(seq, middle + 1, end, threshold)  # 再排好右边的一半
        mergeOrderedSeq(seq, start, middle, end)  # 最后合并排序结果


if __name__ == '__main__':
    aa = [4, 2, 5, 1, 6, 3, 7, 9, 8]
    mergeSort(aa)
    print(aa)

 

本人博客已搬家,新地址为:http://www.pycoding.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值