BZOJ 4519 [Cqoi2016]不同的最小割 最小割树(分治最小割)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#define N 1005
#define INF 1000000000
using namespace std;
int n,m,seq[N],w[N*10];
namespace NetworkFlow {
    struct Edge {
        int from,to,nxt,cap;
        Edge() {}
        Edge(int _from,int _to,int _nxt,int _cap):
            from(_from),to(_to),nxt(_nxt),cap(_cap) {}
    }e[N*20];
    int tot,S,T,fir[N],cur[N],d[N];
    void Add_Edge(int from,int to,int cap) {
        e[++tot]=Edge(from,to,fir[from],cap), fir[from]=tot;
        e[++tot]=Edge(to,from,fir[to],0), fir[to]=tot;
        return ;
    }
    bool bfs() {
        queue<int> q;
        for(int i=1;i<=n;++i) d[i]=-1;
        d[S]=0, q.push(S);
        while(!q.empty()) {
            int x=q.front(); q.pop();
            for(int i=fir[x];~i;i=e[i].nxt) {
                if(!e[i].cap || d[e[i].to]!=-1) continue;
                d[e[i].to]=d[x]+1;
                if(e[i].to==T) return true;
                q.push(e[i].to);
            }
        }
        return false;
    }
    int dfs(int x,int now) {
        if(!now || x==T) return now;
        int f,flow=0;
        for(int& i=cur[x];~i;i=e[i].nxt) {
            if(d[e[i].to]!=d[x]+1) continue;
            f=dfs(e[i].to,min(e[i].cap,now));
            if(!f) continue;
            e[i].cap-=f, e[i^1].cap+=f;
            now-=f, flow+=f;
            if(!now) break;
        }
        return flow;
    }
    int Dinic() {
        int maxflow=0;
        while(bfs()) {
            for(int i=1;i<=n;++i) cur[i]=fir[i];
            maxflow+=dfs(S,INF);
        }
        return maxflow;
    }
    void build() {
        for(int i=0;i<=tot;++i) e[i].cap=w[i>>1];
        return ;
    }
}
namespace MincutTree {
    struct Edge {
        int from,to,nxt,val;
        Edge() {}
        Edge(int _from,int _to,int _nxt,int _val):
            from(_from),to(_to),nxt(_nxt),val(_val) {}
    }e[N*2];
    int tot,fir[N];
    bool k[N*100];
    void Add_Edge(int u,int v,int val) {
        e[++tot]=Edge(u,v,fir[u],val), fir[u]=tot;
        e[++tot]=Edge(v,u,fir[v],val), fir[v]=tot;
        return ;
    }
    void init() {
        tot=-1, memset(fir,-1,sizeof fir);
        return ;
    }
    int bfs(int st) {
        static int d[N];
        int sum=0;
        queue<int> q;
        for(int i=1;i<=n;++i) d[i]=-1;
        q.push(st), d[st]=INF;
        while(!q.empty()) {
            int x=q.front(); q.pop();
            if(x!=st && !k[d[x]]) k[d[x]]=true, ++sum;
            for(int i=fir[x];~i;i=e[i].nxt) {
                if(d[e[i].to]!=-1) continue;
                d[e[i].to]=min(d[x],e[i].val);
                q.push(e[i].to);
            }
        }
        return sum;
    }
    int calc() {
        int ans=0;
        for(int i=1;i<=n;++i) ans+=bfs(i);
        return ans;
    }
}
void solve(int l,int r) {
    if(l>=r) return ;
    using namespace NetworkFlow;
    build();
    S=seq[l], T=seq[r];
    int v=Dinic();
    MincutTree::Add_Edge(S,T,v);
    static int tmp[N];
    int _l=l,_r=r;
    for(int i=l;i<=r;++i)
        if(d[seq[i]]!=-1) tmp[_l++]=seq[i];
        else tmp[_r--]=seq[i];
    for(int i=l;i<=r;++i) seq[i]=tmp[i];
    solve(l,_l-1), solve(_r+1,r);
    return ;
}
int main() {
    using namespace NetworkFlow;
    memset(fir,-1,sizeof fir), tot=-1;
    MincutTree::init();
    scanf("%d%d",&n,&m);
    for(int i=0,x,y;i<m;++i)
        scanf("%d%d%d",&x,&y,w+i), Add_Edge(x,y,0);
    for(int i=1;i<=n;++i) seq[i]=i;
    solve(1,n);
    printf("%d\n",MincutTree::calc());
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值