HMM学习(3)-Patterns generated by a hidden process

本文探讨了在某些场景下,如天气预测和语音识别,马尔科夫过程不足以描述复杂模式的情况。引入了隐马尔科夫模型(HMM),这是一种包含两个状态集合和三个概率集的模型,用于解决可观察状态与隐状态之间的关系。

3.  Patterns generated by a hidden process

3.2 When a Markov process may not be powerful enough

In some cases the patterns that we wish to find are not described sufficiently by a Markov process. Returning to the weather example, a hermit may perhaps not have access to direct weather observations, but does have a piece of seaweed. Folklore tells us that the state of the seaweed is probabilistically related to the state of the weather - the weather and seaweed states are closely linked. In this case we have two sets of states, the observable states (the state of the seaweed) and the hidden states (the state of the weather). We wish to devise an algorithm for the hermit to forecast weather from the seaweed and the Markov assumption without actually ever seeing the weather.

 

在一些场合我们所希望找到的模式不能够被马尔科夫过程很好的描述。回到天气的例子,一个隐士可能没有办法直接观察到天气,但是他有一片海藻。传说海藻与天气的状态有一定的联系。在这个例子中,我们有两个状态集合,可观察的状态(海藻的状态)和隐状态(天气的状态)。我们希望为隐士设计一个算法,在不能实际看到天气的情况下,来从海藻和马尔科夫假设中预测出天气的状态。

A more realistic problem is that of recognizing speech; the sound that we hear is the product of the vocal chords, size of throat, position of tongue and several other things. Each of these factors interacts to produce the sound of a word, and the sounds that a speech recognition system detects are the changing sound generated from the internal physical changes in the person speaking.

一个更实际的问题是语音识别;我们所听到的声音是产生自声带,喉咙的大小,舌头的位置和其他一些东西。每一个因素相互作用产生了词语的声音,一个语音识别系统所探测到的声音都是人说话时内部身体变化所产生的变化的声音。

Some speech recognition devices work by considering the internal speech production to be a sequence of hidden states, and the resulting sound to be a sequence of observable states generated by the speech process that at best approximates the true (hidden) states. In both examples it is important to note that the number of states in the hidden process and the number of observable states may be different. In a three state weather system (sunny, cloudy, rainy) it may be possible to observe four grades of seaweed dampness (dry, dryish, damp, soggy); pure speech may be described by (say) 80 phonemes, while a physical speech system may generate a number of distinguishable sounds that is either more or less than 80.

 

一些语音识别设备认为内部的语音的产物(internal speech production,语言?)是一个隐状态的序列,发出的声音是一个可观察状态的序列,这个序列由很好的近似了真实状态(隐状态)的语音过程所产生。在两个例子中,非常重要的一点是,隐过程中的状态的数量与可观察状态的数量会很不一样。在3状态的天气系统中(天晴,多云,下雨),可能会观察到海藻湿润度的四个等级(干燥,稍干,微湿,潮湿);纯语音可以被80个音素所描述,而一个人体的语音系统可能会产生非常多的不同的声音,比80多或少。

In such cases the observed sequence of states is probabilistically related to the hidden process. We model such processes using a hidden Markov model where there is an underlying hidden Markov process changing over time, and a set of observable states which are related somehow to the hidden states.

在这些情况下,状态的可观察序列在一定的概率下与隐过程相关联。我们使用隐马尔科夫模型来对这样的过程进行建模,这里有一个潜在的隐马尔科夫过程随时间而改变,以及一个在一定程度上与隐状态关联的可观察的状态集合。

3.2 Hidden Markov Models

The diagram below shows the hidden and observable states in the weather example. It is assumed that the hidden states (the true weather) are modeled by a simple first order Markov process, and so they are all connected to each other.

 

下图展示了在天气的例子中的隐状态以及可观察状态。它假定了隐状态(真实的天气)通过一个简单的一阶马尔科夫过程来进行建模,所以他们两两之间都有连接。

 

The connections between the hidden states and the observable states represent the probability of generating a particular observed state given that the Markov process is in a particular hidden state. It should thus be clear that all probabilities `entering' an observable state will sum to 1, since in the above case it would be the sum of Pr(Obs|Sun), Pr(Obs|Cloud) and Pr(Obs|Rain).

 

在隐状态和可观察状态之间的连接表示了在给定马尔科夫过程停留在一个特定的隐状态时产生特定的观察状态的概率。不难看出,所有的进入一个可观察状态的概率之和应该为1,在上面的例子中就应该是Pr(Obs|Sun), Pr(Obs|Cloud) Pr(Obs|Rain)三者的和。??和底下的矩阵有什么区别??

In addition to the probabilities defining the Markov process, we therefore have another matrix, termed the confusion matrix, which contains the probabilities of the observable states given a particular hidden state. For the weather example the confusion matrix might be;

除了定义了马尔科夫过程的概率,我们还有另外一个矩阵,称作混合矩阵(confusion matrix,先验概率?),它包括了给定特定隐状态的情况下可观察状态的概率。天气的混合矩阵可以是:

Notice that the sum of each matrix row is 1.

每行之和为1

3.3 Summary

We have seen that there are some processes where an observed sequence is probabalistically related to an underlying Markov process. In such cases, the number of observable states may be different to the number of hidden states.

 

我们已经看到在一些过程中,可观察序列是在一定概率下与隐藏的马尔科夫过程相关联。在这些例子中,可观察状态的数量可以与隐状态不同。

We model such cases using a hidden Markov model (HMM). This is a model containing two sets of states and three sets of probabilities;

我们使用隐马尔科夫模型来对这些例子进行建模。这个模型包含了两个状态集合和三个概率集(哪三个?转移概率,confusion matrix,?初始?)。

  • hidden states : the (TRUE) states of a system that may be described by a Markov process (e.g., the weather).
  • observable states : the states of the process that are `visible' (e.g., seaweed dampness).

 

confusion matrix?????????? 
【2024亚太杯ABCD题】亚太地区大学生数学建模竞赛(思路、代码、论文持续更新中.......)内容概要:本文档为2024及2025年亚太地区大学生数学建模竞赛(APMCM)的备赛资源汇总,涵盖A、B、C、D四道赛题的思路解析、MATLAB/Python代码实现及论文写作指导,内容持续更新。资源涉及多个技术方向,包括无人机回收系统动力学建模(高斯原理)、非线性模型预测控制(MPC)、储能系统经济性优化、可重构电池故障诊断、电力系统机组组合的量子优化、裂纹检测、卡尔曼滤波目标跟踪、路径规划(UGV/UAV协同)、MIMO通信系统、天线物理边界计算等。同时提供大量科研技术支持,覆盖机器学习与深度学习(如LSTM、CNN、Transformer等在负荷、光伏、风电预测中的应用)、图像处理、信号处理、雷达追踪、电力系统优化、车间调度、元胞自动机模拟等多个领域,并附有智能优化算法(如粒子群、遗传算法、新型群智算法)在各类工程问题中的实现案例。; 适合人群:具备一定数学建模基础、熟练掌握MATLAB或Python编程的高校本科生、研究生,尤其是准备参加亚太杯、全国大学生数学建模竞赛或其他科研项目的参赛者与科研人员。; 使用场景及目标:①为亚太杯数学建模竞赛提供完整的解题思路、代码支持与论文参考,帮助快速构建高质量解决方案;②作为科研项目的技术参考资料,
内容概要:本文档为“澎湃创想”人像摄影工作室的启动与运营体系搭建项目管理计划书,旨在赣州市章贡区创建一家定位高端、个性化艺术人像摄影的工作室。项目采用预测型生命周期,通过WBS分解为场地建设、设备采购、团队组建、系统搭建和正式开业五大工作包,明确范围、进度与成本三大基线。项目总工期控制在D+45天内,成本基线为28万元,关键路径为场地装潢(31.6天)。通过S曲线、EVM等工具进行成本与进度控制,并设定年销售额35万元的盈亏平衡点。项目重点管理质量、风险与干系人,采用RACI矩阵明确6人核心团队职责,识别十大风险并制定应对策略,尤其关注市场竞争与人才流失问题。; 适合人群:具备项目管理基础知识,从事创业项目策划、小型文化创意企业运营或项目执行的相关人员,尤其是摄影、艺术类初创企业负责人及项目管理者。; 使用场景及目标:①用于指导人像摄影工作室从零到一的系统化筹建与运营管理;②学习如何运用WBS、PDM、EVM、风险矩阵等PMI工具进行实际项目规划与控制;③掌握初创企业在资源有限条件下如何进行成本控制、进度管理和风险应对。; 阅读建议:此计划书结构完整,涵盖十大知识领域,建议结合项目管理知识体系(如PMBOK)进行对照学习,重点关注其基线制定、风险应对策略与干系人管理方法,并可在实际创业项目中参考其执行与监控机制。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值