POJ2396-带上下限制的最大流

53 篇文章 1 订阅
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;

const int NN=1000;
const int MM=5000000;
const int INF=0x3fffffff;

bool blank=false;
int n,m,S,T,NV,en,head[NN];
struct Edge{
    int u,v,flow,next;
} e[MM];
void add(int u,int v,int flow)
{
    e[en].u=u;
    e[en].v=v;
    e[en].flow=flow;
    e[en].next=head[u];
    head[u]=en++;
    e[en].u=v;
    e[en].v=u;
    e[en].flow=0;
    e[en].next=head[v];
    head[v]=en++;
}

int tot1,tot2,a[NN],b[NN],l[NN][NN],r[NN][NN],w[NN];
bool init()
{
    int c,u,v,x,f1,f2,r1,r2;
    char ope;

    en=0;
    memset(head,-1,sizeof(head));
    scanf("%d%d",&m,&n);

    int s=n+m+1;
    int t=s+1; //原有源网络的源和汇
    S=0; T=t+1; NV=T+1; //构造的新网络的源汇
    tot1=0; tot2=0;
    for (int i=1; i<=m; i++)
    {
        scanf("%d",&a[i]);
        tot1+=a[i];
        w[i]=a[i];
    } //行
    for (int i=1; i<=n; i++)
    {
        scanf("%d",&b[i]);
        tot2+=b[i];
        w[i+m]=-b[i];
    } //列
    for (int i=1; i<=m; i++)
        for (int j=1; j<=n; j++)
        {
            r[i][j]=min(a[i],b[j]);
            l[i][j]=0;
        }//流量上下限初始化

    scanf("%d",&c);
    while (c--)
    {
        scanf("%d %d %c %d",&u,&v,&ope,&x);
        f1=r1=u;
        f2=r2=v;
       if (u==0) f1=1,r1=m;//擦!刚开始这里看错题意了,WA都不知道怎么WA的
        if (v==0) f2=1,r2=n;
        for (u=f1; u<=r1; u++)
            for (int v=f2; v<=r2; v++)
            {
                if (ope=='='){
                    r[u][v]=min(r[u][v],x);
                    l[u][v]=max(l[u][v],x); //更新上下界
                }
                else if (ope=='>') l[u][v]=max(l[u][v],x+1); //更新下界
                else if (ope=='<') r[u][v]=min(r[u][v],x-1); //更新上界
            }
    }
    if (tot1!=tot2) return false; //矛盾时退出

    //build
    for(int i=1; i<=m; i++)
        for(int j=1; j<=n; j++)
        {
            if(l[i][j]>r[i][j]) return false; //矛盾时退出
            add(i,j+m,r[i][j]-l[i][j]);
            w[i]-=l[i][j];
            w[j+m]+=l[i][j];
        }

    add(s,T,tot1);
    add(t,S,tot1);
    for (int i=1; i<=m+n; i++)
    {
        if (w[i]>0) add(S,i,w[i]);
        if (w[i]<0) add(i,T,-w[i]);
    }
    add(t,s,INF);
    return true;
}

int dis[NN],pre[NN],gap[NN],cur[NN];
int sap()
{
    int maxflow=0;
    for (int i=0; i<NV; i++)
    {
        dis[i]=gap[i]=0;
        cur[i]=head[i];
    }
    int aug=INF;
    int u=pre[S]=S;
    gap[0]=NV;
    while (dis[S]<NV)
    {
loop:
        for (int &i=cur[u]; i!=-1; i=e[i].next)
        {
            int v=e[i].v;
            if (e[i].flow && dis[u]==dis[v]+1)
            {
                if (e[i].flow<aug) aug=e[i].flow;
                pre[v]=u;
                u=v;
                if (v==T)
                {
                    maxflow+=aug;
                    for (u=pre[u]; v!=S; v=u,u=pre[u])
                    {
                        e[cur[u]].flow-=aug;
                        e[cur[u]^1].flow+=aug;
                    }
                    aug=INF;
                }
                goto loop;
            }
        }
        int min_dis=NV;
        for (int i=head[u]; i!=-1; i=e[i].next)
        {
            int v=e[i].v;
            if (e[i].flow && dis[v]<min_dis)
            {
                min_dis=dis[v];
                cur[u]=i;
            }
        }
        if (--gap[dis[u]]==0) break;
        gap[dis[u]=min_dis+1]++;
        u=pre[u];
    }
    return maxflow;
}

int p[NN][NN];
bool solve()
{
    sap();
    for (int i=0; i<en; i+=2)
    {
        if (e[i].u && e[i].u<=m && e[i].v>m && e[i].v<=m+n)
            p[e[i].u][e[i].v-m]=e[i+1].flow;
        else if (e[i].u==S)
            if (e[i].flow) return false;
            else if (e[i].v==T)
                if (e[i].flow) return false;
    }
    for (int i=1; i<=m; i++)
    {
        for (int j=1; j<=n; j++) printf("%d ",p[i][j]+l[i][j]);
        printf("\n");
    }
    return true;
}

int main()
{
    int cas;
    scanf("%d",&cas);
    while (cas--)
    {
        if (!blank) blank=true;
        else        puts("");
        if (!init())  { puts("IMPOSSIBLE"); continue; }
        if (!solve()) { puts("IMPOSSIBLE"); continue; }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值