Object介绍

1.方法简介

    1> Object clone()   ---->创建并返回对象的副本

    2> boolean equals(Object obj)   -->某个其他对象是否与该对象“相等”

    3> void finalize()   --->当垃圾回收器确定不存在该对象的更多引用时,由对象的垃圾回收器调用此方法进行回收

    4> Class getClass()   --->  返回一个对象运行时类

    5> int hashCode   --->返回对象的哈希码值

    6>void notify    --->唤醒在此对象监视器上等待的单个进程。

    7> void notifyAll  ---> 唤醒在此对象监视器上等待的所有进程

    8>String toString()  --->返回该对象的字符串表示

    9> void wait()  ---->导致当前对象等待,直到其他线程调用该对象的notify()或是notifyAll()方法

    10> void wait(long timeout)  --->导致当前对象等待,直到其他线程唤醒或是超过指定的时间量

    11> void wait(long timeout,int nanos)  --->...........或者某个其他线程中断当前线程。

2.重点说明

    1>hashCode ,常规规定:在java应用程序执行期间,同一对象调用hashCode(),必须返回相同的整数。前提是equals比较中所用的信息没有被修改。不同程序的执行,无需一致。如果根据equals(Object)调用两个对象相等,则hashCode也是相同的。

    2>equals队形必须是同一对象的引用,才会true。重写该方法,为了维护常规规定,要重写hashCode

    3>clone, 这里对象的副本是浅复制。

        浅复制:被复制对象的所有变量都含有与原来对象相同的值,而所有的对其他对象的引用,仍指向其原来的对象                        (仅复制所考虑的对象,而不复制所引用的对象)

        深复制:引用其他对象的变量将指向被复制的新的对象。(把复制的对象所引用的所有对象都复制一遍)

        Cloneable实现其接口可重写clone方法,o=(student)super.clone;;;;如果是深复制,则要在重写的方法中进行其他引用复制:o.p=(Teacher)p.clone();

        如果引用层次比较高,要层层深度clone,且每个对象都要实行Cloneable接口,比较麻烦,可以用序列化。

        对象序列化:将对象的状态转化为字节流,再通过这些值生成相同状态的对象。对象都实现Serializable接口。

                            public Object deepClone()throws...{

                                  ByteArrayOutputstream bo=new ByteArrayOutputStream();

                                  ObjectOutputstream oo=new ObjectOutputStream(bo);

                                  oo.writeObject(this);   //将对象写在流里

                                  ByteArrayInputStream bi=new ByteArrayInputStream();

                                  ObjectInputStream oi=new ObjectInputStream(bi);

                                  return(oi.readObjct());   //丛流里读出来

                            }

    4>toString()    返回:getClass.getName+'@'+Integer.toHexString(hashCode())   此对象哈希码的无符号十六进制

    5> notify()   选择一个线程唤醒,是任意的。竞争的结果

内容概要:本文详细介绍了一个基于秃鹰搜索算法(BES)优化最小二乘支持向量机(LSSVM)的多特征分类预测项目,涵盖从理论原理、模型架构、代码实现到GUI界面设计的完整流程。项目通过BES算法自动优化LSSVM的关键参数(如正则化参数C和核函数参数gamma),提升模型在高维、多特征数据下的分类精度与泛化能力。结合特征工程、交叉验证、数据增强等技术,有效应对过拟合与参数调优难题,并通过混淆矩阵、ROC曲线、t-SNE可视化等多种方式实现结果解释与模型评估。项目还提供了完整的目录结构、模块化代码封装、并行计算支持及可扩展的部署架构,适用于金融风控、医疗诊断、工业故障检测等多个领域。; 适合人群:具备一定Python编程基础和机器学习知识的研发人员、数据科学家及工程技术人员,尤其适合从事智能算法开发、模型优化与实际工程落地的相关从业者;工作年限建议在1-5年之间。; 使用场景及目标:①在高维多特征数据场景中实现高精度分类预测;②解决传统LSSVM人工调参困难的问题,实现参数自动寻优;③构建可解释、可可视化、可部署的智能分类系统,支持金融、医疗、工业等领域的智能决策应用;④学习如何将智能优化算法(如BES)与经典机器学习模型(如LSSVM)融合并实现端到端项目开发。; 阅读建议:建议读者结合文中提供的完整代码进行实践操作,重点关注BES优化算法的实现逻辑、LSSVM的训练流程以及GUI界面的集成方式。在学习过程中,可尝试更换数据集、调整参数范围或引入其他优化算法进行对比实验,以深入理解模型性能变化机制。同时,建议关注项目部署与可扩展性设计,为后续工程化应用打下基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值