归并
排序是建立在归并操作上的一种有效的排序
算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序
表,称为二路
归并。
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。
模仿自--linux c一站式编程
#include<stdio.h>
#define LEN 8
int ary[LEN] = { 5, 2, 4, 7, 1, 3, 2, 6 };
void merge(int start, int end, int mid)
{
/*generate left and right array*/
int i, j, n, m, k;
n = mid - start + 1;
m = end - mid;
int left[n],right[m];
for (i = 0; i < n; i++) {
left[i] = ary[i + start];
}
for (j = 0; j < m; j++) {
right[j] = ary[j + mid + 1];
}
/*merge*/
i =j = 0;
for (k = start; i < n && j < m; k++) {
if (left[i] < right[j]) {
ary[k] = left[i];
++i;
}
else {
ary[k] = right[j];
++j;
}
}
if (i < n) {
for (; i < n; i++) {
ary[k] = left[i];
++k;
}
}
if (j < m) {
ary[k] = right[j];
++k;
}
printf("merge(%d-%d)%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n",start,end, ary[0], ary[1],
ary[2], ary[3], ary[4], ary[5], ary[6], ary[7]);
}
void sort(int start, int end)
{
if(start<end)
{
int mid = (start + end) / 2;
sort(start, mid);
sort(mid + 1, end);
merge(start, end, mid);
}
}
int main(void)
{
sort(0,7);
return 0;
}