自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(158)
  • 收藏
  • 关注

原创 力扣hot100_链表(1)_python版本

【代码】力扣hot100_链表(1)_python版本。

2025-04-30 01:30:00 102 2

原创 搜广推校招面经八十四

类型含义计费方式优化目标CPMCost Per Mille,按每千次展示计费每千次展示直接付费曝光最大化oCPMOptimized CPM,优化后千次展示成本仍按千次展示计费转化最大化(点击、注册等)

2025-04-30 01:00:00 708

原创 力扣hot100_普通数组_python版本

【代码】力扣hot100_普通数组_python版本。

2025-04-29 01:30:00 837 73

原创 力扣hot100_子串_python版本

【代码】力扣hot100_子串_python版本。

2025-04-28 00:15:00 631 48

原创 搜广推校招面经八十二

场景推荐使用的正则化方式高维稀疏特征L1需要自动特征选择L1特征之间存在多重共线性L2更注重解的稳定性L2想结合两者优点Elastic Net(L1 + L2 混合)

2025-04-27 00:15:00 1191 3

原创 力扣hot100_双指针_python版本

【代码】力扣hot100_双指针_python版本。

2025-04-26 02:30:00 175 2

原创 力扣hot100_滑动窗口_python版本

【代码】力扣hot100_滑动窗口_python版本。

2025-04-26 02:30:00 229

原创 搜广推校招面经八十一

在多任务学习(Multi-Task Learning, MTL)中,多个任务共享部分模型结构,以提升整体效果。然而,不同任务间存在问题,即不同任务对参数的优化方向不一致,导致性能下降。

2025-04-25 01:30:00 1401 91

原创 力扣hot100_哈希_python版本

【代码】力扣hot100_哈希_python版本。

2025-04-24 03:15:00 413 18

原创 力扣hot100_链表(3)_python版本

【代码】力扣hot100_链表(3)_python版本。

2025-04-24 00:15:00 521 58

原创 搜广推校招面经八十

x2<=x。

2025-04-23 02:15:00 1072 15

原创 搜广推校招面经七十九

LGB最显著的优点就是快,其原理之前看过很多次,但是发现还是讲的不是很流畅主要是因为对每个方法理解的不够深。于是找来LightGBM的原文首先要知道,lgb模型都是处理二维结构化数据的。因此,lgb速度优化的两大算法就是从如何减少这两个维度开始的,知道这个就会比较清楚的理解lgb的几个算法是在干什么。EFB算法采用构图(build graph)的思想,将特征作为节点,不互斥的特征之间进行连边,然后从图中找出所有的捆绑特征集合。

2025-04-22 03:00:00 1025 12

原创 力扣hot100_图论_python版本

【代码】力扣hot100_图论_python版本。

2025-04-21 22:41:07 320 5

原创 力扣hot100_贪心算法_python版本

【代码】力扣hot100_贪心算法_python版本。

2025-04-19 02:45:00 297 13

原创 搜广推校招面经七十八

这个根据实际情况来吧。如果实习时候用了moe,就可能被问到。loss权重的话,直接根据任务的重要性吧。。。

2025-04-19 00:15:00 1389 1

原创 搜广推面经七十七

Soft Label(软标签)是一种标签表示方法,区别于传统的Hard Label(硬标签),它使用一个概率分布来表示标签,而不是仅仅一个明确的类别。Soft Label 使得模型不仅关注某个类别的正确性,还能反映类别之间的模糊性和相似性。

2025-04-18 01:45:00 1290 106

原创 搜广推校招面经七十六

对于一个类别分布Pp1p2pnPp1​p2​...pn​其中pip_ipi​表示第 i 类的概率,熵越大,表示分布越均匀(不确定性越高)。遍历每一个特征。对每个特征尝试所有可能的划分方式(取值、切分点)。根据分裂准则计算“划分优度”(如信息增益、信息增益率、Gini)。选择最优特征和划分点进行分裂。对子节点递归执行上述步骤,直到满足停止条件。

2025-04-17 00:45:00 1484 73

原创 搜广推校招面经七十五

{(x1​y1​x2​y2​...xn​yn​)}xi​∈Rdyi​∈−11fxsignwTxb使得所有样本被正确分类,且分类间隔最大。

2025-04-16 02:45:00 999 75

原创 力扣hot100_技巧_python版本

【代码】力扣hot100_技巧_python版本。

2025-04-15 00:01:49 313 11

原创 搜广推校招面经七十四

推荐系统中的召回阶段是从海量候选物品中快速筛出一部分“可能感兴趣”的物品,为排序阶段准备候选集。不同业务场景对正负样本的定义可能有差异,但是大差不差。

2025-04-14 00:15:00 1232 19

原创 搜广推校招面经七十三

概念定义指针(Pointer)是一个变量,存储另一个变量的地址引用(Reference)是一个变量的别名/别称,和原变量共用同一块内存int a = 10;// 指针// p 是 a 的地址// 引用int& r = a;// r 是 a 的别名。

2025-04-13 02:00:00 1038 110

原创 基础算法:滑动窗口_python版本

能使用滑动窗口的题,基本都需要数字为正整数,这样才能保证滑入一个数字总和是增加的(单调性)

2025-04-11 02:00:00 1907 88

原创 搜广推校招面经七十二

这是一个很有代表性的问题,在广告、推荐等场景中,经常会面临预测点击率(CTR)、转化率(CVR)或预估转化点击率(pCVR)的任务。pCVRPConversion∣Click也就是说,pCVR 是,它是一个条件概率。

2025-04-11 02:00:00 1440 111

原创 力扣hot100_矩阵(重制版)_python版本

【代码】力扣hot100_矩阵(重制版)_python版本。

2025-04-10 03:30:00 401 18

原创 搜广推校招面经七十一

矩阵分解在推荐系统中是一个非常核心的方法,尤其是在中。我们可以通过用户对物品的评分行为来推测用户的喜好,从而推荐他们可能喜欢的内容。

2025-04-10 00:15:00 1441 3

原创 力扣hot100_回溯(2)_python版本

【代码】力扣hot100_回溯(2)_python版本。

2025-04-09 00:15:00 367 14

原创 搜广推校招面经七十

见【搜广推校招面经六十二信息增益是一种用于特征选择的指标,广泛应用于构建决策树(如 ID3 算法)。它衡量的是某个特征 A 在对数据集 D 进行划分后,信息不确定性的减少量。熵 和 条件熵。

2025-04-09 00:15:00 1544 111

原创 搜广推校招面经六十九

编码方式是否可学习是否支持任意长度是否捕捉相对位置适用场景Sinusoidal❌✅⚠️间接NLP基本任务Learnable✅❌❌短文本、常规分类任务Relative✅✅✅文本生成、问答等RoPE✅✅✅大模型、长文本✅/❌✅✅/❌图像、音频、视频对比维度基础原理不同频率的 sin/cos 函数编码三角函数表示向量旋转是否可学习否否(但可与可学习结合)应用位置加到 token embedding 上。

2025-04-08 03:00:00 1355 66

原创 搜广推面经六十八

DQN 是 DeepMind 在 2015 年提出的深度强化学习算法,通过使用神经网络来逼近 Q-learning 中的 Q 函数,解决了传统 Q-learning 无法应对高维状态空间的问题。

2025-04-07 00:30:00 1174 111

原创 回溯(排列型)

n!n!

2025-04-07 00:30:00 184 13

原创 回溯(组合型):剪枝

【代码】回溯(组合型):剪枝。

2025-04-05 00:15:00 244 6

原创 搜广推面经六十七

见【搜广推校招面经四十六设真实分布为PPP,预测分布为QQQHPQ−∑xPxlog⁡QxHPQ−x∑​PxlogQx是使用预测分布QQQ来编码真实分布PPP所需的平均 bit 数。在分类问题中,PPP通常是 one-hot 向量(只有一个元素为1,其余为0)。

2025-04-05 00:15:00 1291 16

原创 Pyspark学习二:快速入门基本数据结构

实际工作中其实不需要自己安装和配置,更重要的是会用。所以就不研究怎么安装配置了。前面介绍过:简单来说,Spark是一款分布式的计算框架,用于调度成百上千的服务器集群,计算TB、PB乃至EB级别的海量数据。Spark作为全球顶级的分布式计算框架,支持众多的编程语言进行开发。

2025-04-04 00:02:21 1560 108

原创 搜广推校招面经六十六

在 Transformer 结构中,由于模型(不像 RNN 那样有时间步的顺序依赖),需要通过**位置编码(Positional Encoding, PE)**来提供位置信息,使得模型能够区分不同 token 的相对位置。

2025-04-04 00:01:07 1566 57

原创 力扣hot100_动态规划(2)_python版本

【代码】力扣hot100_动态规划(2)_python版本。

2025-04-03 00:52:38 303 8

原创 搜广推校招面经六十五

Focal Loss 是一种。

2025-04-03 00:52:09 938 1

原创 Pyspark学习一:概述

允许 Python 开发者轻松使用 Spark 进行大规模数据处理。,比 Hadoop MapReduce 更快,适用于。的 Python API,提供了。Spark 本身是一个。

2025-04-02 02:00:00 1563 108

原创 搜广推校招面经六十四

逆天啊,上来就是暴击。

2025-04-02 01:30:00 1356 56

原创 回溯(子集型):分割回文串

【代码】回溯(子集型):分割回文串。

2025-04-01 00:15:00 385 90

原创 搜广推校招面经六十三

L1 正则化适用于特征选择,会让部分参数变为 0,从而得到稀疏模型。L2 正则化适用于防止过拟合,不会让参数变 0,而是让它们趋于较小的值,提高模型的泛化能力。在深度学习中,L2(权重衰减)更常用,而在稀疏特征数据中,L1 更合适。

2025-03-31 00:15:00 1018 72

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除