- 博客(189)
- 收藏
- 关注
原创 搜广推校招面经一百零三
Zero-Inflated 部分建模是否为 0的事件,用Bernoulli 分布p0PrY0p0PrY0Log-Normal 部分对Y0Y > 0Y0logY∼Nμσ2logY∼Nμσ2fyp0y01−p0⋅1yσ2πexp−lny−μ22σ2y0f(y) =fyp01−p0⋅yσ2π1。
2025-08-08 20:59:32
886
原创 搜广推校招面经一百零二
问题方向优化建议指标不一致设计更贴合业务的评估指标(如 Weighted NDCG)分布不一致使用近线训练样本,引入在线特征、周期性更新模型部署不一致特征/模型/服务版本对齐,建立稳定部署流程策略干扰区分模型效果与策略干预效果,独立评估纯模型表现数据不闭环建立推荐结果与点击行为的闭环采样与再训练机制。
2025-08-02 00:15:00
756
原创 搜广推校招面经一百零一
Triplet Loss 用于强化 anchor 和 positive 的距离比 anchor 和 negative 的距离更近,通常用于 embedding 学习。BPR Loss 是推荐召回中非常经典的pairwise ranking loss,目的是让正样本得分比负样本得分高。model.eval() # 设置为推理模式,使用moving统计量。model.train() # 设置为训练模式,使用batch统计量。如果当前排序已经满足 margin 要求,损失为 0;
2025-08-01 00:15:00
694
原创 搜广推校招面经一百
交叉熵定义为真实分布y\mathbf{y}y与预测分布yyLCE−∑i1CyilogyiLCE−i1∑Cyilogyi由于y\mathbf{y}y是 one-hot 向量,只在iki = kik时yi1y_i = 1yi1LCE−logykLCE−logykLL212y−y2LL221y−y2y。
2025-07-31 00:08:16
765
原创 搜广推校招面经九十九
方法是否考虑评分偏移适合数据类型常用于Cosine否稀疏评分矩阵用户-用户 / 物品-物品Pearson是稀疏评分矩阵用户-用户是稀疏评分矩阵物品-物品Jaccard否二值行为矩阵隐式反馈欧式/曼哈顿距离否稠密特征向量特征工程或相似搜索。
2025-07-30 13:58:18
1115
原创 搜广推面经九十八
项目NCELoss本质分类任务(正 vs 负)Softmax 近似是否校正偏差❌ 否(拟合二分类目标)✅ 是(log 采样概率校正)推理一致性❌ 不一致✅ 一致(训练/推理)采样分布要求灵活需明确估计qyq(y)qyNCELoss 多用于 word2vec、representation learning 等 embedding 学习场景Sampled Softmax 多用于大规模分类任务、推荐系统中的点击预测或召回任务中。
2025-07-27 03:32:20
688
1
原创 搜广推校招面经九十七
特征偏移指的是训练数据和测试数据(或者线上和线下数据)中,输入特征的分布发生了变化,导致模型在新数据上的表现下降。简单说,就是模型训练时见过的特征分布和实际预测时遇到的特征分布不一致。概率校准是指对模型输出的预测概率进行调整,使得预测的概率值能够真实反映事件发生的实际概率。换句话说,模型预测一个样本属于正类的概率是0.8,那么在所有被预测为0.8的样本中,真实正类的比例也应接近80%。
2025-07-27 01:46:18
842
原创 SASRec(2018):Self-Attentive Sequential Recommendation及其pytorch代码实现
在个性化推荐系统的研究中,用户兴趣建模始终是核心挑战之一。随着深度学习的发展,研究者提出了多种模型以挖掘用户的动态偏好。其中,DIN(Deep Interest Network) 和 SASRec(Self-Attentive Sequential Recommendation) 分别代表了推荐系统中两种截然不同的建模路径。
2025-07-21 01:41:52
720
原创 搜广推校招面经九十六
Adam(Adaptive Moment Estimation)结合了 Momentum(动量法)和 RMSprop 的优点:+ϵm^tAdam = Momentum + RMSprop 的综合,具备更快的收敛和更稳定的训练性能。1.2. RMSprop 为什么比 Adagrad 好?Adagrad 更新公式如下:θt+1=θt−αGt+ϵ⋅gt\theta_{t+1} = \theta_t - \frac{\alpha}{\sqrt{G_t + \epsilon}} \cdot g_t
2025-07-19 13:17:44
918
原创 搜广推校招面经九十四
TF-IDF(Term Frequency - Inverse Document Frequency) 是一种用于衡量词语在文档集中重要性的统计方法,常用于文本特征提取。
2025-07-17 11:21:14
1067
原创 搜广推校招面经九十二
L1 正则化(Lasso):在损失函数中加入参数的绝对值之和Loss = 原始损失 + λ * Σ|w_i|L2 正则化(Ridge):在损失函数中加入参数的平方和Loss = 原始损失 + λ * Σ(w_i)^2其中,λ 是正则化系数,控制正则项对总损失的影响。
2025-07-13 00:29:37
690
原创 搜广推校招面经九十三
逻辑回归用于二分类任务,模型输出的是一个概率值yiσwTxiyiσwTxi,表示样本为正类yi1y_i = 1yi1的概率。逻辑回归从概率建模角度出发,假设每个标签服从伯努利分布yi∼Bernoulliyiyi∼BernoulliyiID3(Iterative Dichotomiser 3)是最早的决策树算法之一,由Quinlan于1986年提出。选择信息增益(Information Gain)
2025-07-12 07:00:47
508
原创 搜广推校招面经九十一
传统的转化率建模方式:这样做的问题:ESMM 通过建模两个可观测事件,联合推导出 CVR::样本特征:是否点击:是否转化(仅在 z=1 时观察)三、如何解决类别不平衡问题,追问了focal loss。3.1. Focal Loss(用于类别不平衡):FL(pt)=−αt(1−pt)γlog(pt)FL(p_t) = -\alpha_t (1 - p_t)^\gamma \log(p_t)FL(pt)=−αt(1−pt)γlog(pt)四、Faiss 的应用场景Faiss(F
2025-07-11 13:45:00
766
原创 搜广推校招面经九十
对比项LSTMGRU门数量3 个(Forget, Input, Output)2 个(Update, Reset)状态变量h_tc_t仅h_t参数量多少训练速度较慢更快Word2Vec是从大量文本语料中以无监督的方式学习语义知识的一种模型,它用词向量的方式表征词的语义信息,即通过一个嵌入空间使得语义上相似的单词在该空间内距离很近。其实现的算法有两个。
2025-07-10 00:15:00
11960
原创 搜广推校招面经八十九
抖音推荐算法面试内容摘要: MMOE模型与极化现象 MMOE采用共享专家网络和独立门控机制实现多任务学习 极化现象指专家网络使用不平衡,可通过正则化、PLE结构或负载均衡损失(Load Balance Loss)解决 Attention机制 Self-Attention是特殊的Attention,Q/K/V来自同一输入 计算公式:softmax(QK^T/√d_k)V,实现序列信息的交互整合 Adam优化器 结合Momentum和RMSProp优点 核心:一阶/二阶矩的指数滑动平均估计 优点:自适应学习率、
2025-07-09 00:15:00
587
原创 搜广推校招面经八十八
LSTM(Long Short-Term Memory)是为了解决传统 RNN 存在的长期依赖问题(Long-Term Dependency)而设计的,其在结构上做了关键改进。,通过精细控制信息的流动来缓解上述问题。
2025-07-08 00:15:00
729
3
原创 搜广推校招面经八十七
本文摘要: Bagging与Boosting对比:Bagging并行训练模型减少方差,Boosting串行训练纠正偏差;Bagging对数据有放回采样,Boosting加权采样误差样本;Bagging抗过拟合强,Boosting需调参防过拟合。 梯度下降与梯度提升:梯度下降优化参数空间,更新模型参数;梯度提升优化函数空间,逐步逼近最优函数;前者用于参数化模型,后者构建复合模型(如XGBoost)。 XGBoost优化:相比GBDT引入二阶梯度,采用贪心算法选择分裂节点,并优化列存储、缓存、并行计算等工程实现
2025-07-07 00:15:00
1083
1
原创 力扣_链表_python版本
本文介绍了三种链表反转问题的解法:1) 206题完全反转链表,采用头插法逐节点反转;2) 92题反转链表指定区间,先定位区间两端再局部反转;3) 25题K个一组反转链表,统计节点数后分组处理。三种解法均使用虚拟头节点简化操作,通过改变指针指向实现反转,其中局部反转需注意连接反转前后的节点。代码简洁高效,时间复杂度均为O(n)。
2025-07-06 03:45:00
285
原创 搜广推校招面经八十六
Q(Query):查询向量K(Key):键向量V(Value):值向量然后通过如下公式计算注意力权重和输出:其中:n 是序列长度,d 是特征维度√d_k 是缩放因子,用于避免梯度爆炸DQN(Deep Q-Network)是将深度神经网络应用于强化学习Q-learning的一种方法,用于在高维状态空间中逼近Q函数。核心思想:使用一个深度神经网络Q(s, a;θ)来逼近最优动作价值函数Q*,并通过不断地采样来更新网络参数。输入:状态(如图像)输出:每个动作对应的 Q 值。
2025-07-06 00:15:00
1008
3
原创 搜广推校招面经八十五
本文介绍了滴滴算法工程师面试中的核心知识点,主要内容包括: XGBoost目标函数推导:详细推导了XGBoost的目标函数组成(损失函数+正则项),以及通过二阶泰勒展开优化目标函数的过程,解释了XGBoost相比传统GBDT更快的5个关键原因。 特征工程处理:针对高维稀疏特征,提出了降维(SVD/PCA)和编码优化(频率编码/目标编码)两种解决方案。 Uplift模型:与传统分类模型对比,强调其识别"可被干预影响用户"的核心价值,并介绍了双模型法等实现方法。 因果推断方法:在无法进行随机
2025-07-05 00:15:00
818
原创 力扣hot100_滑动窗口_python版本
本文介绍了滑动窗口算法及其在三个典型问题中的应用。滑动窗口的核心思想是通过双指针维护一个窗口区间,动态调整窗口大小以满足特定条件。文章分别讲解了三个例题:1) 长度最小的子数组,通过维护窗口总和来寻找满足条件的最短子数组;2) 乘积小于K的子数组,统计乘积小于K的连续子数组数量;3) 无重复字符的最长子串,利用列表操作快速定位重复字符位置。每个问题都提供了Python实现代码,展示了滑动窗口在解决连续子区间问题中的高效性和灵活性。
2025-07-04 02:00:00
255
原创 力扣hot100_链表(2)_python版本
本文介绍了五个链表相关问题的解法。首先,141题和142题分别使用快慢指针判断链表是否有环以及找到环的入口。21题通过暴力求解合并两个有序链表。2题和445题则分别处理了链表表示的两数相加问题,其中445题需要先反转链表再进行相加操作。每个问题都提供了相应的Python代码实现,展示了如何通过指针操作和哨兵节点来简化链表问题的处理。
2025-05-09 02:00:00
212
2
原创 搜广推校招面经八十四
类型含义计费方式优化目标CPMCost Per Mille,按每千次展示计费每千次展示直接付费曝光最大化oCPMOptimized CPM,优化后千次展示成本仍按千次展示计费转化最大化(点击、注册等)
2025-04-30 01:00:00
939
原创 搜广推校招面经八十二
场景推荐使用的正则化方式高维稀疏特征L1需要自动特征选择L1特征之间存在多重共线性L2更注重解的稳定性L2想结合两者优点Elastic Net(L1 + L2 混合)
2025-04-27 00:15:00
1252
3
原创 搜广推校招面经八十一
在多任务学习(Multi-Task Learning, MTL)中,多个任务共享部分模型结构,以提升整体效果。然而,不同任务间存在问题,即不同任务对参数的优化方向不一致,导致性能下降。
2025-04-25 01:30:00
1546
95
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人