PCA

目录

主成分分析原理:

PCA的算法推导

PCA的算法步骤:

sklearn


主成分分析原理:

是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。

• 主成分分析(Principal Component Analysis,PCA),将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。又称主分量分析。
• 主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。
• 主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量

PCA的算法推导

1.内积与投影:
两个维数相同的向量的内积被定义为

内积运算将两个向量映射为一个实数。其计算方式非常容易理解,但是其意义并不明显。下面我们分析内积的几何意义

假设A和B是两个n维向量,我们知道n维向量可以等价表示为n维空间中的一条从原点发射的有向线段,为了简单起见我们假设A和
B均为二维向量,在二维平面上A和B可以用两条发自原点的有向线段表示,见下图:

现在我们从A点向B所在直线引一条垂线。我们知道垂线与B的交点叫做A在B上的投影,再设A与B的夹角是a,则投影的矢量长度为其中是向量A的模也就是A线段的标量长度

到这里还是看不出内积和这东西有什么关系,不过如果我们将内积表示为另一种我们熟悉的形式:
A与B的内积等于A到B的投影长度乘以B的模。再进一步,如果我们假设B的模为1,即那么就变成了
也就是说,设向量B的模为1,则A与B的内积值等于A向B所在直线投影的矢量长度!这就是内积的一种几何解释

2.基: 一个二维向量可以对应二维笛卡尔直角坐标系中从原点出发的一个有向线段。例如下面这个向量:

上面的向量可以表示为(3,2)

向量(x,y)实际上表示线性组合此处(1,0)和(0,1)叫做二维空间中的一组基要准确描述向量,首先要确定一组基,然后给出在基所在的各个直线上的投影值,就可以了。
我们之所以默认选择(1,0)和(0,1)为基,当然是比较方便,因为它们分别是x和y轴正方向上的单位向量

(1,1)和(-1,1)也可以成为一组基。一般来说,我们希望基的模是1,因为从内积的意义可以看到,如果基的模是1,那么就可以方便的用向量点乘基而直接获得其在新基上的坐标了!那么上面的基可以变为

我们想获得(3,2)在新基上的坐标,即在两个方向上的投影矢量值,那么根据内积的几何意义,我们只要分别计算(3,2)和两个基的内积,不难得到新的坐标为,下图给出了新的基以及(3,2)在新基上坐标

3.基变换的矩阵表示
将(3,2)变换为新基上的坐标,就是用(3,2)与第一个基做内积运算,作为第一个新的坐标分量,然后用(3,2)与第二个基做内积运算,作为第二个新坐标的分量。实际上,我们可以用矩阵相乘的形式简洁的表示这个变换

其中矩阵的两行分别为两个基,乘以原向量,其结果刚好为新基的坐标。可以稍微推广一下,如果我们有m个二维向量,只要将二维向量按列排成一个两行m列矩阵,然后用“基矩阵”乘以这个矩阵,就得到了所有这些向量在新基下的值。例如(1,1),(2,2),(3,3),想变换到刚才那组基上,则可以这样表示

此时已经达到降维的目的

4.协方差矩阵
上面我们讨论了选择不同的基可以对同样一组数据给出不同的表示,而且如果基的数量少于向量本身的维数,则可以达到降维的效果。但是我们还没有回答一个最最关键的问题:如何选择基才是最优的。或者说,如果我们有一组N维向量,现在要将其降到K维(K小于N),那么我们应该如何选择K个基才能最大程度保留原有的信息

那么如何选择这个方向(或者说基)才能尽量保留最多的原始信息呢?一种直观的看法是:希望投影后的投影值尽可能分散

5.方差
我们希望投影后投影值尽可能分散,而这种分散程度,可以用数学上的方差来表述。此处,一个字段的方差可以看做是每个元素与字段均值的差的平方和的均值,即

于是上面的问题被形式化表述为:寻找一个一维基,使得所有数据变换为这个基上的坐标表示后,方差值最大

6.协方差
对于上面二维降成一维的问题来说,找到那个使得方差最大的方向就可以了。不过对于更高维,还有一个问题需要解决。考虑三维降到二维问题。与之前相同,首先我们希望找到一个方向使得投影后方差最大,这样就完成了第一个方向的选择,继而我们选择第二个投影方向

如果我们还是单纯只选择方差最大的方向,很明显,这个方向与第一个方向应该是“几乎重合在一起”,显然这样的维度是没有用的,因此,应该有其他约束条件。从直观上说,让两个字段尽可能表示更多的原始信息,我们是不希望它们之间存在(线性)相关性的,因为相关性意味着两个字段不是完全独立,必然存在重复表示的信息

数学上可以用两个字段的协方差表示其相关性,由于已经让每个字段均值为0,则

可以看到,在字段均值为0的情况下,两个字段的协方差简洁的表示为其内积除以元素数m

至此,我们得到了降维问题的优化目标:将一组N维向量降为K维(K大于0,小于N),其目标是选择K个单位(模为1)正交基,使得原始数据变换到这组基上后,各字段两两间协方差为0,而字段的方差则尽可能大(在正交的约束下,取最大的K个方差)。

7.协方差矩阵
最终要达到的目的与字段内方差及字段间协方差有密切关系。因此我们希望能将两者统一表示,仔细观察发现,两者均可以表示为内积的形式,而内积又与矩阵相乘密切相关。假设我们只有a和b两个字段,那么我们将它们按行组成矩阵X

然后我们用X乘以X的转置,并乘上系数1/m

这个矩阵对角线上的两个元素分别是两个字段的方差,而其它元素是a和b的协方差。两者被统一到了一个矩阵

8.协方差矩阵对角化
设原始数据矩阵X对应的协方差矩阵为C,而P是一组基按行组成的矩阵,设Y=PX,则Y为X对P做基变换后的数据。设Y的协方差矩阵为D,我们推导一下D与C的关系

我们要找的P不是别的,而是能让原始协方差矩阵对角化的P。
协方差矩阵C是一个是对称矩阵,在线性代数上,实对称矩阵有一系列非常好的性质:
1)实对称矩阵不同特征值对应的特征向量必然正交。
2)设特征向量 重数为r,则必然存在r个线性无关的特征向量对应于,因此可以将这r个特征向量单位正交化

由上面两条可知,一个n行n列的实对称矩阵一定可以找到n个单位正交特征向量,设这n个特征向量为 ,我们将其按列组成矩阵:
则对协方差矩阵C有如下结论

其中 为对角矩阵,其对角元素为各特征向量对应的特征值

矩阵P:

PCA的算法步骤:


设有m条n维数据。
1)将原始数据按列组成n行m列矩阵X
2)将X的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值
3)求出协方差矩阵
4)求出协方差矩阵的特征值及对应的特征向量

5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P
6)即为降维到k维后的数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

#输入文件的每行数据都以\t隔开
def loaddata(datafile):
    return np.array(pd.read_csv(datafile,sep="\t",header=-1)).astype(np.float)

#计算均值,要求输入数据为numpy的矩阵格式,行表示样本数,列表示特征
def meanX(dataX):
    return np.mean(dataX,axis=0)#axis=0表示依照列来求均值。假设输入list,则axis=1
"""
參数:
    - XMat:传入的是一个numpy的矩阵格式,行表示样本数,列表示特征    
    - k:表示取前k个特征值相应的特征向量
返回值:
    - finalData:參数一指的是返回的低维矩阵,相应于输入參数二
    - reconData:參数二相应的是移动坐标轴后的矩阵
"""
def pca(XMat, k):
    average = meanX(XMat)
    m, n = np.shape(XMat)
    data_adjust = []
    avgs = np.tile(average, (m, 1))
    data_adjust = XMat - avgs
    covX = np.cov(data_adjust.T)   #计算协方差矩阵
    featValue, featVec=  np.linalg.eig(covX)  #求解协方差矩阵的特征值和特征向量
    index = np.argsort(-featValue) #依照featValue进行从大到小排序
    finalData = []
    if k > n:
        print("k must lower than feature number")
        return
    else:
        #注意特征向量时列向量。而numpy的二维矩阵(数组)a[m][n]中,a[1]表示第1行值
        selectVec = np.matrix(featVec.T[index[:k]]) #所以这里须要进行转置
        finalData = data_adjust * selectVec.T
        reconData = (finalData * selectVec) + average
    return finalData, reconData
def plotBestFit(data1, data2):
    dataArr1 = np.array(data1)
    dataArr2 = np.array(data2)

    m = np.shape(dataArr1)[0]
    axis_x1 = []
    axis_y1 = []
    axis_x2 = []
    axis_y2 = []
    for i in range(m):
        axis_x1.append(dataArr1[i,0])
        axis_y1.append(dataArr1[i,1])
        axis_x2.append(dataArr2[i,0])
        axis_y2.append(dataArr2[i,1])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(axis_x1, axis_y1, s=50, c='red', marker='s')
    ax.scatter(axis_x2, axis_y2, s=50, c='blue')
    plt.xlabel('x1'); plt.ylabel('x2');
    plt.savefig("outfile.png")
    plt.show()
#依据数据集data.txt
def main():
    datafile = "data.txt"
    XMat = loaddata(datafile)
    k =3
    return pca(XMat, k)
if __name__ == "__main__":
    finalData, reconMat = main()
    print(finalData)
    plotBestFit(finalData, reconMat)

sklearn

import numpy as np
from sklearn.decomposition import PCA
dataset = np.loadtxt("data.txt",delimiter="\t")
pca = PCA(n_components=3)
print(pca.fit_transform(dataset))
from sklearn.decomposition import TruncatedSVD
svd = TruncatedSVD(n_components=3)
print(svd.fit_transform(dataset))

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值