单变量函数f(x)的傅里叶变换F(u)定义为:
,其中;相反,如果已知F(u),通过傅里叶反变换就可以获得f(x):
这两个式子组成了傅里叶变换对。另外,这两个式子可以很容易的扩展到两个变量u和v:
(1)
(2)
需要提醒的是,以上定义,是针对连续函数而言,而对于图像这种离散函数,需要用“离散傅里叶变换(DFT)”来进行表示:
(3)
DFT的反变换定义为:
(4)
为了计算式(3)中的F(u),首先在指数项中带入u=0,然后,将所有x值相加。对所有M个u值重复这一过程,从而可获得完整的傅里叶变换。
离散变换对的一个重要特征是,不像连续的情况,不必关心DFT或者它的反变换是否存在,因为它们总是存在的。因此,对于数字图像处理而言,离散变换或者其反变换的存在不是问题。
需要注意的是:根据欧拉公式:
(5)
将(5)带入(3),并且 ,可得:
(6)
其中,u=0,1,2,...,M-1;不难发现,傅里叶变换的每一项(对于每一个u值,F(u)的值)由函数f(x)的所有值组成。而f(x)的值则与各种频率的正弦值和余弦值相乘。因为u决定了变换的频率成分,所以被称为F(u)的频率域。一个恰当的比喻是将傅里叶变换看做是一个玻璃棱镜。棱镜可以将白色的光线分成不同颜色成分的仪器,每个成分的颜色由波长(或者频率)决定。傅里叶变换可以看做是“数学的棱镜”,将函数基于频率成分分为不同的成分。同样的道理,傅里叶变换使得我们可以通过频率成分来分析一个函数。
正如在复数的分析中那样,我们发现,有时在极坐标下表示F(u)很方便:
其中 (7)
上式称为傅里叶变换的幅度或者频率谱,同时:
(8)
上式称为傅里叶变换的相角或者相位谱。而R(u)和I(u)分别是F(u)的实部和虚部。另外,有时候,我们会看到“功率谱”这个概念,它被定义为傅里叶变换的平方:
(9)
需要注意的是:“谱密度”也用来指代功率谱。