对于a^b,普通的求法是用一个循环一直乘b个a,这样的方法对于某些题目来说可能显得比较慢。
二分快速幂是一种利用b的二进制特征来快速求a^b的算法。
例如:
a = 2, b = 35
则b的二进制表示形式为100011
则 a^b = (2^32) * (2^2) * (2^1)
有了这样的思路之后,就不用循环b次了。
假设b的二进制表示有n位,从后往前依次为第1-n位,初始结果为1。则现在只需要从最后一位开始,若该位为0,则略过,若该位为1,则结果乘上a^(2^当前位序号)。最后得到的结果就是a^b了。这样循环执行的次数仅为b的二进制表示的位数,远小于b。
- long long bigpow(int x, int y)
- {
- long long ret = 1;
- long long tmp = x;
- while (y > 0)
- {
- if (y & 1) ret *= tmp;
- y >>= 1;
- tmp *= tmp;
- }
- return ret;
- }
上述代码中的函数输入参数为两个整型值x和y,返回x^y的值。应当注意的是返回值及临时变量应当设置为范围足够大的数字类型,否则会发生溢出。