传送门:洛谷
题目描述:
这片土地被分成
N
×
M
N\times M
N×M 个格子,每个格子里写着 ‘R’ 或者 ‘F’,R 代表这块土地被赐予了 rainbow,F 代表这块土地被赐予了 freda。
现在 freda 要在这里卖萌。。。它要找一块矩形土地,要求这片土地都标着 ‘F’ 并且面积最大。
但是 rainbow 和 freda 的 OI 水平都弱爆了,找不出这块土地,而蓝兔也想看 freda 卖萌(她显然是不会编程的……),所以它们决定,如果你找到的土地面积为 S,它们每人给你 S 两银子。
输入:
5 6
R F F F F F
F F F F F F
R R R F F F
F F F F F F
F F F F F F
输出:
45
在重新学悬线法时碰到了这一题.难度不大,随手写一篇题解
主要思路:
- 对于这道题我们其实只要将我们的记录我们的每一个位置向左和向右和它相同的连续的最远位置即可.并且还需要记录向上扩展的最远位置,大致解法与这道题基本上是一致的,可以参考那一篇的题解即可,此处就不在赘述了
- 对于与那道题不同的方面,我们对于此题需要特判一下F和R,假设我们碰到的是R直接跳过即可
并且注意,这道题的ans初始化需要为0才行,因为可能答案为0
下面是具体的代码部分:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <stack>
#include <deque>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
inline ll read() {
ll x=0,w=1;char ch=getchar();
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') w=-1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
return x*w;
}
#define maxn 1000000
#define ll_maxn 0x3f3f3f3f3f3f3f3f
const double eps=1e-8;
int n,m;
int max_left[1010][1010],max_right[1010][1010];
int up_length[1010][1010];
int mp[1010][1010];
int main() {
n=read();m=read();
string a;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++) {
cin>>a;
if(a[0]=='F') {
mp[i][j]=1;
}else {
mp[i][j]=0;
}
max_left[i][j]=j;max_right[i][j]=j;up_length[i][j]=1;
}
}
for(int i=1;i<=n;i++) {
for(int j=2;j<=m;j++) {
if(mp[i][j]==mp[i][j-1]) max_left[i][j]=max_left[i][j-1];
}
}
for(int i=1;i<=n;i++) {
for(int j=m-1;j>=1;j--) {
if(mp[i][j]==mp[i][j+1]) max_right[i][j]=max_right[i][j+1];
}
}
int ans=0;
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(mp[i][j]==0) continue;
if(i>1&&mp[i][j]==mp[i-1][j]) {
max_left[i][j]=max(max_left[i][j],max_left[i-1][j]);
max_right[i][j]=min(max_right[i][j],max_right[i-1][j]);
up_length[i][j]+=up_length[i-1][j];
}
int len=max_right[i][j]-max_left[i][j]+1;
ans=max(ans,len*up_length[i][j]);
}
}
cout<<ans*3<<endl;
return 0;
}