传送门:牛客
题目描述:
恶魔猎手尤迪安野心勃勃,他背叛了暗夜精灵,率领深藏在海底的娜迦族企图叛变。守望者在与尤迪安的交
锋中遭遇了围杀,被困在一个荒芜的大岛上。为了杀死守望者,尤迪安开始对这个荒岛施咒,这座岛很快就
会沉下去。到那时,岛上的所有人都会遇难。守望者的跑步速度为17m/s,以这样的速度是无法逃离荒岛
的。庆幸的是守望者拥有闪烁法术,可在1s内移动60m,不过每次使用闪烁法术都会消耗魔法值10点。守望
者的魔法值恢复的速度为4点/s,只有处在原地休息状态时才能恢复。
现在已知守望者的魔法初值M,他所在的初始位置与岛的出口之间的距离S,岛沉没的时间T。你的任务是写一
个程序帮助守望者计算如何在最短的时间内逃离荒岛,若不能逃出,则输出守望者在剩下的时间内能走的最
远距离。注意:守望者跑步、闪烁或休息活动均以秒(s)为单位,且每次活动的持续时间为整数秒。距离的单
位为米(m)。
输入:
39 200 4
输出:
No
197
主要思路:
- 首先我们先分析一下数据,我们发现我们可以花费5s的时间来进行两次传送,会前进120m,而假设我们在这段过程中一直在跑步的话只能前进85m,我们发现假设我们可以进行传送的话,显然是传送更为优秀的
- 但是又因为我们可能在终点的前一小段距离因为传送的恢复情况导致我们的跑步比传送要快,这就需要我们进行分类了.此题成为一个数学问题
- 但是毕竟我们是有程序的,我们能不能越过数学直接使用代码来解决问题呢.其实是可以的,也就是我们可以将传送和跑步分开来计算,也就是每一秒钟我们都记录跑步跑的距离和传送的距离,假设我们的传送的距离大于我们的跑步的距离,我们就将我们的跑步的距离改为我们的传送的距离就行(为什么能这么操作呢,因为我们的跑步是无时无刻进行的,但是传送是更优的,也就是能传送就传送,假设不能传送了,我们就加入跑步就行,分开来只是为了方便判断能不能进行传送)
下面是具体的代码部分:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <stack>
#include <deque>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
inline ll read() {
ll x=0,w=1;char ch=getchar();
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') w=-1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
return x*w;
}
#define maxn 1000000
#define ll_maxn 0x3f3f3f3f3f3f3f3f
const double eps=1e-8;
const int mod=1e6+7;
int n,m;
int dp[200][200];
int a[maxn];
int main() {
n=read();m=read();
for(int i=1;i<=n;i++) a[i]=read();
for(int i=0;i<=a[1];i++) dp[1][i]=1;
for(int i=2;i<=n;i++) {
for(int j=0;j<=m;j++) {
for(int k=0;k<=min(a[i],j);k++) {
dp[i][j]=(dp[i-1][j-k]+dp[i][j])%mod;
}
}
}
cout<<dp[n][m]<<endl;
return 0;
}