刷题记录:牛客NC16496[NOIP2014]飞扬的小鸟

本文介绍了一种简化版的小鸟飞行游戏,玩家通过控制小鸟上升和下降避开管道。通过建立动态规划模型,求解到达终点的最小点击次数或最多通过的管道数。代码实现中,利用dp数组记录每个位置的最小步数,并处理障碍物,最终找出最优解。
摘要由CSDN通过智能技术生成

传送门:牛客

题目描述:

为了简化问题,我们对游戏规则进行了简化和改编:
1.   游戏界面是一个长为n,高 为m的二维平面,其中有k个管道(忽略管道的宽度)。
2.   小鸟始终在游戏界面内移动。小鸟从游戏界面最左边任意整数高度位置出发,到达游戏界面最右边时,游戏完成。
3.   小鸟每个单位时间沿横坐标方向右移的距离为1,竖直移动的距离由玩家控制。如果点击屏幕,小鸟就会上升一定高度X,每个单位时间可以点击多次,效果叠加;如果不点击屏幕,小鸟就会下降一定高度Y。小鸟位于横坐标方向不同位置时,上升的高度X和下降的高度Y可能互不相同。
4.   小鸟高度等于0或者小鸟碰到管道时,游戏失败 。小鸟高度为m时,无法再上升。
现在,请你判断是否可以完成游戏。如果可以,输出最少点击屏幕数;否则,输出小鸟最多可以通过多少个管道缝隙。

样例过长,此处省略

主要思路:

  1. 首先根据题目找出我们的dp方程,对于这道题显然我们可以使用 d p [ i ] [ j ] 来 记 录 dp[i][j]来记录 dp[i][j]到达 ( i , j ) (i,j) (i,j)这个坐标的最小步数.
  2. 显然的我们这个坐标是可以从前一步进行上升和下降得到的.对于上升我们又有两种情况,一种是从前一格往右移的时候往上飞,另一种是在当前位置按了很多次进行转移,因此我们应该有

d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j − u p ] + 1 , d p [ i ] [ j − u p ] + 1 ) dp[i][j]=min(dp[i-1][j-up]+1,dp[i][j-up]+1) dp[i][j]=min(dp[i1][jup]+1,dp[i][jup]+1) u p up up是按一次上升的高度

  1. 当然我们也可以由下落来得到,也就是

d p [ i ] [ j ] = m i n ( d p [ i ] [ j ] , d p [ i − 1 ] [ j + d o w n ] ) dp[i][j]=min(dp[i][j],dp[i-1][j+down]) dp[i][j]=min(dp[i][j],dp[i1][j+down])

  1. 并且对于障碍物,我们只要将那个位置的dp值改为 i n f inf inf就行,代表无法转移到到那边,也无法从那边转移过来,对于我们最后的答案,只要判断一下我们的最后位置是否存在一个坐标的值不是 i n f inf inf就行

下面是具体的代码部分:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <stack>
#include <deque>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
inline ll read() {
	ll x=0,w=1;char ch=getchar();
	for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') w=-1;
	for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
	return x*w;
}
#define maxn 1000000
#define ll_maxn 0x3f3f3f3f3f3f3f3f
const double eps=1e-8;
int n,m,k;
int dp[10020][2010];int up[maxn],down[maxn];
int max_pos[maxn],min_pos[maxn];int flag[maxn];
int main() {
	n=read();m=read();k=read();
	for(int i=1;i<=n;i++) {
		up[i]=read();down[i]=read();
		min_pos[i]=0;max_pos[i]=m+1;//记录我们当前能走的范围
	}
	int p,l,h;
	for(int i=1;i<=k;i++) {
		p=read();l=read();h=read();
		flag[p]=1;
		max_pos[p]=h;
		min_pos[p]=l;
	}
	memset(dp,0x3f,sizeof(dp));
	for(int i=1;i<=m;i++) dp[0][i]=0;
	for(int i=1;i<=n;i++) {
		for(int j=1+up[i];j<=m+up[i];j++) {
		//此处多加是因为我们可能加上超过我们的m,但是此时最多m,我们需要记录一下最后取一下min
			dp[i][j]=min(dp[i-1][j-up[i]],dp[i][j-up[i]])+1;
		}
		for(int j=m;j<=m+up[i];j++) dp[i][m]=min(dp[i][m],dp[i][j]);
		for(int j=1;j<=m-down[i];j++) {
			dp[i][j]=min(dp[i-1][j+down[i]],dp[i][j]);
		}
		for(int j=1;j<=min_pos[i];j++) dp[i][j]=inf;
		for(int j=max_pos[i];j<=m;j++) dp[i][j]=inf;
	}
	int ans=inf;
	for(int i=1;i<=m;i++) {
		ans=min(ans,dp[n][i]);
	}
	if(ans<inf) printf("1\n%d\n",ans);
	else {
		printf("0\n");
		int i;
		//倒着寻找我们在哪里飞不过去
		for(i=n;i>=1;i--) {
			int j;
			for(j=1;j<=m;j++) {
				if(dp[i][j]<inf) break;
			}
			if(j<=m) break;
		}
		ans=0;
		for(int j=1;j<=i;j++) {
			if(flag[j]) {
				ans++;
			}
		}
		printf("%d\n",ans);
	}
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值