传送门:牛客
题目描述:
Farmer John养了N(1 <= N <= 5,000)头奶牛,每头牛都有一个不超过32位二进制数的正整数编号。FJ希望奶
牛们在进食前,能按编号从小到大的顺序排好队,但奶牛们从不听他的话。为了让奶牛们养成这个习惯,每
次开饭时,FJ从奶牛中顺序地挑出一些,这些奶牛的编号必须按挑出的顺序递增。然后FJ让被挑出的奶牛们
吃饭——其他奶牛就只能饿肚子了。
现在,你得到了这一次开饭前队伍中从前到后所有奶牛的编号。奶牛们想请你计算一下,按照FJ的规定,最
多有多少头奶牛能吃上饭?
比如说,有11头奶牛按以下顺序排好了队(数字代表奶牛的编号)
2 5 18 3 4 7 10 9 11 8 15
对于这个队列,最多可以让7头奶牛吃上饭,她们的编号分别为2,3,4,7,10,11,15。队列2,5,3,10,15是不合法
的,因为第3头奶牛的编号(3)小于她前面一头奶牛的编号(5)。
输入:
11
2 5 18 3 4 7 10 9 11 8 15
输出:
7
一道裸的求最长递增子序列的题目,在我之前的博客里已经有详细介绍此题的 N 2 N^2 N2以及 N l o g N NlogN NlogN的做法,此处就不再赘述了,此处 N 2 N^2 N2做法可能过不了,但是我没试过可能可以??
下面是具体的代码部分( N l o g N 做 法 NlogN做法 NlogN做法):
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <stack>
#include <deque>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
inline ll read() {
ll x=0,w=1;char ch=getchar();
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') w=-1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
return x*w;
}
#define maxn 1000000
#define ll_maxn 0x3f3f3f3f3f3f3f3f
const double eps=1e-8;
int n;int a[maxn];int dp[maxn];
int main() {
n=read();
for(int i=1;i<=n;i++) a[i]=read();
int len=1;
dp[len]=a[1];
for(int i=2;i<=n;i++) {
if(a[i]==dp[len]) continue;
if(a[i]>dp[len]) dp[++len]=a[i];
else {
*lower_bound(dp+1,dp+len+1,a[i])=a[i];
}
}
cout<<len<<endl;
return 0;
}