传送门:牛客
题目描述:
Farmer John 想让她的奶牛准备郡级跳跃比赛,Bessie 和她的伙伴们正在练习跨栏。她们很累,所以她们想消耗最少的能量来跨栏。 显然,对于一头奶牛跳过几个矮栏是很容易的,但是高栏却很难。于是,奶牛们总是关心路径上最高的栏的高度。
奶牛的训练场中有
N
N
N 个站台,分别标记为
1
,
…
,
N
1,\dots,N
1,…,N。所有站台之间有
M
M
M 条单向路径,第
i
i
i 条路经是从站台
S
i
S_i
Si 开始,到站台
E
i
E_i
Ei,其中最高的栏的高度为
H
i
H_i
Hi。无论如何跑,奶牛们都要跨栏。
奶牛们有
T
T
T 个训练任务要完成。第
i
i
i 个任务包含两个数字
A
i
A_i
Ai 和
B
i
B_i
Bi,表示奶牛必须从站台
A
i
A_i
Ai 跑到站台
B
i
B_i
Bi,可以路过别的站台。奶牛们想找一条路径从站台
A
i
A_i
Ai 到站台
B
i
B_i
Bi,使路径上最高的栏的高度最小。 你的任务就是写一个程序,计算出路径上最高的栏的高度的最小值。
输入:
5 6 3
1 2 12
3 2 8
1 3 5
2 5 3
3 4 4
2 4 8
3 4
1 2
5 1
输出:
4
8
-1
一道dp题??不能完全说是最短路的题目,但是融合了Floyd中dp方程的思想,假设明白了Floyd中dp方程的实现过程,那么这道题应该不难
主要思路:
- 首先我们使用 d p [ k − 1 ] [ i ] [ j ] dp[k-1][i][j] dp[k−1][i][j]来表示我们的 i i i点和 j j j点之间的最高栏杆经过了前 k − 1 k-1 k−1点的优化.根据 F l o y d Floyd Floyd的想法,对于我们的 d p [ k ] [ i ] [ j ] dp[k][i][j] dp[k][i][j]可以选择加入 K K K点或者不加入 K 点 K点 K点.如果不加入 k k k点的话,那么 d p [ k ] [ i ] [ j ] = d p [ k − 1 ] [ i ] [ j ] dp[k][i][j]=dp[k-1][i][j] dp[k][i][j]=dp[k−1][i][j],反之,如果我们选择加入K点,那么此时我们的 d p [ k ] [ i ] [ j ] = m a x ( d p [ k − 1 ] [ i ] [ k ] , d p [ k − 1 ] [ k ] [ j ] ) dp[k][i][j]=max(dp[k-1][i][k],dp[k-1][k][j]) dp[k][i][j]=max(dp[k−1][i][k],dp[k−1][k][j]),为什么是这一个dp方程呢.因为我们经过了前k-1个点的优化,此时我们的i->k的最高点和我们的k->j的最高点都是经过前k-1个点优化之后最优的最高点(也就是最低的最高点),此时我们因为K的加入将他们连起来形成了i->j,所以此时的最高点也就是两者取一个max了.
(注意:在理解这个dp转移时极容易想到一下问题:万一i和k或者k和j之间还有其他点怎么办呢,为什么能直接使用i->k,和k->j呢)
这是因为我们的dp方程存的并不是两点之间的最高点,而是经过了前k-1点优化的两点之间的最高点!!,此时即使i->k之间的最优路径是还有其他点的,那么要么这些点之前已经优化了我们的i->k这条路径,要么还没有加入
然后跟 F l o y d Floyd Floyd一样,我们可以优化掉我们的dp方程的第一维
下面是具体的代码部分:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <stack>
#include <deque>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
inline ll read() {
ll x=0,w=1;char ch=getchar();
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') w=-1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
return x*w;
}
#define maxn 1000000
#define ll_maxn 0x3f3f3f3f3f3f3f3f
const double eps=1e-8;
int n,m,t;
int dp[400][400];
int main() {
memset(dp,0x3f,sizeof(dp));
n=read();m=read();t=read();
for(int i=1;i<=m;i++) {
int u=read(),v=read(),w=read();
dp[u][v]=min(dp[u][v],w);
}
for(int k=1;k<=n;k++) {
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
dp[i][j]=min(dp[i][j],max(dp[i][k],dp[k][j]));
}
}
}
while(t--) {
int u=read(),v=read();
if(dp[u][v]==inf) printf("-1\n");
else printf("%d\n",dp[u][v]);
}
return 0;
}