刷题记录:CF1285D Dr. Evil Underscores 区间异或使序列最大值最小

传送门:CF

题目描述:

有一个长度为 n   ( 1 ≤ n ≤ 1 0 5 ) n\ (1\leq n\leq 10^5) n (1n105) 的整数序列 a 1 , ⋯   , a n    ( 0 ≤ a i ≤ 2 30 − 1 ) a_1,\cdots,a_n\ \ (0\leq a_i\leq 2^{30}-1) a1,,an  (0ai2301),你需要找到一个非负整数 X X X 使得 max ⁡ ( a i ⊕ X ) \max(a_i\oplus X) max(aiX) 最小,其中 ⊕ \oplus 为按位异或运算。

输入这个序列,输出 max ⁡ ( a i ⊕ X ) \max(a_i\oplus X) max(aiX) 的最小值。

输入:
3
1 2 3
输出:
2

可以算是一道典题,CF上经常出这些异或之类的题目…

对于这道题,与区间数字异或有关,按照经验,显然我们需要进行按位操作,我们将每一个数字都求出二进制位.然后我们从最高位开始往后面想(为什么是最高位呢,因为我们贪心的来想,肯定是尽量满足最高位最小的).对于每一个位,假如每一个数字在该位的数字都是1/0的情况的话,那么此时显然最终答案这一位应该是0.并且我们的这一个选择对数字的存留也没有什么影响.但是当我们的数字在该位有1有0的时候,显然此时我们的这一位只能是1.并且对于该位,我们可以选择保留该位是1的或者该位是0的.此时就有一个问题了,我们到底应该保留是1还是0的呢.

我们发现目前我们是无法直接判断出到底选择哪一个数字的,所以此时我们采用dfs来进行搜索.我们既搜索选择1之后的情况,也搜索0之后的情况,并且对于这两种情况,我们最后取一个最小值即可.

对于本题来说,想到使用dfs是解题关键


下面是具体的代码部分:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define root 1,n,1
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
inline ll read() {
	ll x=0,w=1;char ch=getchar();
	for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') w=-1;
	for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
	return x*w;
}
#define int long long
#define maxn 1000000
const double eps=1e-8;
#define	int_INF 0x3f3f3f3f
#define ll_INF 0x3f3f3f3f3f3f3f3f
int n;vector<int>a;
int solve(vector<int>p,int k) {
	if(p.size()==0||k<0) return 0;
	vector<int>p1;vector<int>p2;
	for(int i=0;i<p.size();i++) {
		if(p[i]&(1<<k)) p1.push_back(p[i]);
		else p2.push_back(p[i]);
	}
	if(p1.size()==0) return solve(p2,k-1);
	else if(p2.size()==0) return solve(p1,k-1);
	else return (1<<k)+min(solve(p1,k-1),solve(p2,k-1));
}
signed main() {
	n=read();
	for(int i=1;i<=n;i++){
		int num=read();
		a.push_back(num);
	} 
	cout<<solve(a,30)<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值