欧几里得算法

Number 数论

欧几里得算法

百度百科:欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。
假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里得算法,是这样进行的:
1997 / 615 = 3 (余 152)
615 / 152 = 4(余7)
152 / 7 = 21(余5)
7 / 5 = 1 (余2)
5 / 2 = 2 (余1)
2 / 1 = 2 (余0)
至此,最大公约数为1
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。

int gcd(int a,int b){
	if(b==0) return a;
	else return gcd(b,a%b);
}

拓展欧几里得算法

百度百科:扩展欧几里得算法是欧几里得算法(又叫辗转相除法)的扩展。除了计算a、b两个整数的最大公约数,此算法还能找到整数x、y(其中一个很可能是负数)。
通常谈到最大公因子时, 我们都会提到一个非常基本的事实: 给予二整数 a 与 b, 必存在有整数 x 与 y 使得ax + by = gcd(a,b)。有两个数a,b,对它们进行辗转相除法,可得它们的最大公约数——这是众所周知的。然后,收集辗转相除法中产生的式子,倒回去,可以得到ax+by=gcd(a,b)的整数解。

在介绍拓展欧几里得算法的时候我们需要先知道贝祖定理:
如果a、b是整数,那么一定存在整数x、y使得ax + by = gcd(a,b);
换句话说,如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍。(可以来判断一个这样的式子有没有解),有一个直接的应用就是 如果ax+by=1有解,那么gcd(a,b)=1;
它的一个重要推论是:a,b互质的充分必要条件是存在整数x,y使ax+by=1.

int extgcd(int a,int b,int*x,int*y){
    if(b==0){
        *x=1,*y=0 ;
        return a ;
    }
    else {
        int r = extgcd(b,a%b,x,y);
        int t = *x ;
        *x = *y ;
        *y = t - a/b * *y ;
        return r ;
    }
}

最小公倍数

求a和b的最小公倍数直接可以通过求的a和b的最大公因数求得:
lcm(a,b) = (a * b)/ gcd(a,b);
证明如下:
设d是a和b的最大公因数,那么a就可以写成 a = d * a’, b = d * b’,并且 a’ 与 b’ 互质(因为如果 a’ 与 b’ 还有其他因数的话那么 d 就不是 a 和 b 的最大公因数,还可以继续增加),设lcm(a,b)= k, k 如果想要是 a 的倍数必须是d和 a’ 的倍数,同理 k 应该也是d 和 b’ 的倍数,所以 k 应该同时满足的是d , a’ , b’ 的倍数,所以最小应该是k = d * a’ * b’,因为 d * a’ = a,b’ = b / gcd(a,b),所以综上可得
lcm(a,b) = k = d * a’ * b’ = (a * b)/ gcd(a,b);

  • 23
    点赞
  • 100
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值