洛谷P2522 [HAOI2011]Problem b

终于到NOI神殿了,刷题就是我的目标了。

没有目标的人永远不能成功。

废话不多说,先“宰了”这神殿的第一只“拦路虎”!

                                                                       分割线                                                                    

题目传送门

题目描述

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

输入输出格式

输入格式: 

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

输出格式:

共n行,每行一个整数表示满足要求的数对(x,y)的个数

输入输出样例

输入样例#1: 

2 
2 5 1 5 1 
1 5 1 5 2 

 

输出样例#1:

14 
3 

 

说明

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

分析:刚刚学了莫比乌斯反演,打道版题。 
我们设ans(n,m)表示满足x<=n,y<=m且gcd(x,y)=k的数对(x,y)的数量,那么答案就是ans(b,d)-ans(a-1,d)-ans(b,c-1)+ans(a-1,c-1) 
问题就转换成了如何求ans(n,m) 
我们设F(i)表示x<=n,y<=m且i|gcd(x,y)的数对(x,y)的数量,f(i)表示x<=n,y<=m且gcd(x,y)=i的数对数量。然后就比较显然了,其实纠结最久的是最后用sqrt(n)求解过程。 
先跑一个前缀和,其实想快速统计miu(i)×(n/i/k)×(m/i/k),就是要后面的(n/i/k)*(m/i/k)相等,就可以分配律搞一搞,显然要解一个方程n/k/i=n/k/j,其中j最大,i最小,最小可以用上一个j+1得到,那么j怎么求呢? 
设p=n/k,所以有c=p/i。这个好像是一个定理,不管它。有p/j=c,则p>=j*c,所以j<=p/c,所以j的最大值就是p/c,把p=n/k带入,即n/k/(n/k/i),m同理,取最小值,就可以了。

代码:

#include <iostream>
#include <cstdio>
#include <cmath>

const int maxn=50007;

using namespace std;

int mu[maxn],prime[maxn],not_prime[maxn],sum[maxn];
int n,i,A,B,C,D,k,cnt;

void get_mu(int n)//筛莫比乌斯函数
{
    int i,j;
    mu[1]=1;
    for (i=2;i<=n;i++)
    {
        if (!not_prime[i])
        {
            prime[++cnt]=i;
            mu[i]=-1;
        }
        for (j=1;j<=cnt;j++)
        {
            if (prime[j]*i>n) break;
            not_prime[i*prime[j]]=1;
            if (i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            mu[i*prime[j]]=-mu[i];
        }
    }
    sum[1]=mu[1];
    for (i=2;i<=n;i++) sum[i]=sum[i-1]+mu[i];//前缀和
}

int get(int n,int m,int k)
{
    if (n>m) swap(n,m);//保证n<=m
    int i=1,j=0,ans=0;//i为左边界,j为右边界
    for (i=1;i<=n/k;i=j+1)//显然i最大为n/k,因为n/k/i>=1
    {
        j=min(n/k/(n/k/i),m/k/(m/k/i));//这个很明显啦,解释过了
        ans+=(n/i/k)*(m/i/k)*(sum[j]-sum[i-1]);//求和
    }
    return ans;
}

int main()
{
    scanf("%d",&n);
    get_mu(50000);
    for (i=1;i<=n;i++)
    {
        scanf("%d%d%d%d%d",&A,&B,&C,&D,&k);     
        int ans=get(B,D,k)-get(A-1,D,k)-get(B,C-1,k)+get(A-1,C-1,k);//容斥一下
        printf("%d\n",ans);
    }
}

 

这道题目还可以使用树状数组或线段树来实现,时间复杂度也为 $\mathcal{O}(n\log n)$。这里给出使用树状数组的实现代码。 解题思路: 1. 读入数据; 2. 将原数列离散化,得到一个新的数列 b; 3. 从右往左依次将 b 数列中的元素插入到树状数组中,并计算逆序对数; 4. 输出逆序对数。 代码实现: ```c++ #include <cstdio> #include <cstdlib> #include <algorithm> const int MAXN = 500005; struct Node { int val, id; bool operator<(const Node& other) const { return val < other.val; } } nodes[MAXN]; int n, a[MAXN], b[MAXN], c[MAXN]; long long ans; inline int lowbit(int x) { return x & (-x); } void update(int x, int val) { for (int i = x; i <= n; i += lowbit(i)) { c[i] += val; } } int query(int x) { int res = 0; for (int i = x; i > 0; i -= lowbit(i)) { res += c[i]; } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); nodes[i] = {a[i], i}; } std::sort(nodes + 1, nodes + n + 1); int cnt = 0; for (int i = 1; i <= n; ++i) { if (i == 1 || nodes[i].val != nodes[i - 1].val) { ++cnt; } b[nodes[i].id] = cnt; } for (int i = n; i >= 1; --i) { ans += query(b[i] - 1); update(b[i], 1); } printf("%lld\n", ans); return 0; } ``` 注意事项: - 在对原数列进行离散化时,需要记录每个元素在原数列中的位置,便于后面计算逆序对数; - 设树状数组的大小为 $n$,则树状数组中的下标从 $1$ 到 $n$,而不是从 $0$ 到 $n-1$; - 在计算逆序对数时,需要查询离散化后的数列中比当前元素小的元素个数,即查询 $b_i-1$ 位置上的值; - 在插入元素时,需要将离散化后的数列的元素从右往左依次插入树状数组中,而不是从左往右。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值