总结下v3中的主要改进
- 引入logistic regression 来预测objectness
- 如果某个box没有所对应的groundtruth,那么只预测其objectness
- 对于类别的预测,舍弃了softmax,Softmax可被独立的多个logistic分类器替代。Softmax使得每个框分配一个类别(score最大的一个),而目标可能有重叠的类别标签,因此Softmax不适用于多标签分类。使用了binary cross-entropy来预测类别
- 在3个层输出预测 stride分别为32 16 8, 以coco数据集为例,预测的tensor大小为:N x N x (3 x (4 +1 +80)),其中4为坐标,1为objectness,80为class
- 前面两个经2x上采样与最后的输出层合并
- 9个bndbox来自于3个层的bndbox的kmeans聚类
配置文件中超参数部分截取如下:
[net]
# Testing
# batch=1
# subdivisions=1
# Training
batch=64
subdivisions=16
width=608
height=608
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=40000