yolov3学习笔记(二)yolov3.cfg中hyperparams学习笔记

本文详细总结了YoloV3的主要改进,包括引入logistic regression预测objectness,摒弃softmax改用binary cross-entropy进行多标签分类。同时,文章分析了配置文件中的关键超参数,如batch size、subdivisions、momentum和weight decay等,解释了它们在训练过程中的作用,以及数据增强的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总结下v3中的主要改进
  • 引入logistic regression 来预测objectness
  • 如果某个box没有所对应的groundtruth,那么只预测其objectness
  • 对于类别的预测,舍弃了softmax,Softmax可被独立的多个logistic分类器替代。Softmax使得每个框分配一个类别(score最大的一个),而目标可能有重叠的类别标签,因此Softmax不适用于多标签分类。使用了binary cross-entropy来预测类别
  • 在3个层输出预测 stride分别为32 16 8, 以coco数据集为例,预测的tensor大小为:N x N x (3 x (4 +1 +80)),其中4为坐标,1为objectness,80为class
  • 前面两个经2x上采样与最后的输出层合并
  • 9个bndbox来自于3个层的bndbox的kmeans聚类
配置文件中超参数部分截取如下:
[net]
# Testing
# batch=1
# subdivisions=1
# Training
batch=64
subdivisions=16
width=608
height=608
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1

learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=40000
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值