leetcode300.最长上升子序列(java):动态规划和二分法

本文深入探讨了求解最长上升子序列问题的两种高效算法。首先介绍了动态规划方法,通过构建状态转移方程实现O(N^2)的时间复杂度。随后,提出了一种更优的解决方案,利用二分查找技巧结合动态规划思想,将时间复杂度降低至O(nlogn),并详细阐述了其实现过程。
摘要由CSDN通过智能技术生成

题目
在这里插入图片描述
思路一:动态规划

  1. 状态: dp[i]表示以nums[i]结尾的最长上升子序列的长度,一定要包含nums[i]。
  2. 状态转移方程: 遍历这个数之前的数,如果nums[j]<nums[i],那么到nums[i]的最长上升子序列长度为dp[i]和dp[j]+1两者的最大值。
  3. 初始化: 将dp[i]全部初始化为1,因为最长上升子序列至少为1(该数本身).
  4. 输出: dp[i]中的最大值。

具体代码

class Solution {
    public int lengthOfLIS(int[] nums) {
        if(nums == null || nums.length == 0){
            return 0;
        }
        int dp[] = new int[nums.length];
        for(int i = 0;i < nums.length;i++){
            dp[i] = 1;
        }
        int max = 1;
        for(int i = 1;i < nums.length;i++){
            for(int j = 0;j < i;j++){
                if(nums[j]<nums[i]){
                    dp[i] = Math.max(dp[i],dp[j]+1);
                }
            }
            max = Math.max(max,dp[i]);
        }
        return max;
    }
}

时间复杂度:O(N^2)
空间复杂度:O(N)

思路二:
太trick了,想不到。。。
具体代码

class Solution {
    public int lengthOfLIS(int[] nums) {
        if(nums == null || nums.length == 0){
            return 0;
        }
        int arr[] = new int[nums.length];
        arr[0] = nums[0];
        int end = 0;
        for(int i = 1;i < nums.length;i++){
            if(nums[i]>arr[end]){
            //如果比末尾数大,直接加入arr
                arr[++end] = nums[i];
            }else{
            //二分查找,找到第一个比nums[i]大的数,将nums[i]替换该数的前一个数,这个方法不能有重复的数。
                int left = 0;
                int right = end;
                while(left < right){
                    int mid = left + ((right - left)>>1);
                    if(arr[mid]<nums[i]){
                        left = mid+1;
                    }else{
                        right = mid;
                    }
                }
                arr[left] = nums[i];
            }
        }
        return end+1;
    }
}

在这里插入图片描述
时间复杂度:O(nlogn)
空间复杂度:O(N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值