自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

张哥频道:电生理信号和磁共振成像

数据科学工程师;长期从事医学图像处理,脑电语音时间序列处理

  • 博客(141)
  • 资源 (2)
  • 收藏
  • 关注

原创 【MRI 数据】TCIA UPENN-GBM MRI 肿瘤数据集

TCIA UPENN-GBM MRI 数据基本介绍。

2024-10-22 21:45:23 640

原创 【信号处理】CSPC-2018 心电数据集介绍

CSPC-2018 数据集介绍和下载地址

2024-10-15 23:52:11 553

原创 【AI学习】DDPM 无条件去噪扩散概率模型实现(pytorch)

无条件噪声扩散模型pytorch简单实现。

2024-09-29 00:40:07 1680

原创 【AI基础】pytorch lightning 基础学习

pytorch lightning 库部署深度学习模型全工作流程。

2024-09-27 00:58:46 1431

原创 【MRI数据】LEMON MRI 数据集下载

使用Cyberduck 实现LEMON MRI dataset 下载

2024-09-18 22:13:35 483

原创 【MRI基础】Partial volume 伪影

MR成像中的partial volume 伪影和抑制方法。

2024-09-16 17:02:52 303

原创 【MRI基础】混叠伪影

MR成像混叠伪影的产生和抑制策略

2024-09-16 16:50:55 508

原创 【MRI基础】Eddy current 涡流伪影

MRI 中的涡流伪影产生和抑制策略。

2024-09-11 16:59:32 249

原创 【MRI基础】Zero-filling 重建伪影

MRI 图像重建中的零填充伪影是指当采集的数据采样不足或使用插值技术在图像重建过程中填充缺失的数据点时可能出现的伪影。

2024-09-11 16:44:33 521

原创 【MRI基础】回波序列长度-echo train length ETL概念

磁共振成像--回波序列长度ETL基本概念

2024-09-10 00:00:58 713

原创 【MRI基础】TI反转时间概念

在磁共振成像 (MRI) 中,反转时间 (TI) 是反转恢复脉冲序列中的一个特定参数。它表示施加 180 度反转脉冲(将纵向磁化翻转到相反方向)与随后的 90 度激励脉冲(将磁化翻转到横向平面以创建 MR 信号)之间的时间间隔。

2024-09-08 01:49:33 1546

原创 【MRI基础】TR 和 TE 时间概念

磁共振成像 (MRI) 中的重复时间TR和回波时间TE

2024-09-08 01:29:15 3244

原创 【MRI基础】对比度噪声比CNR概念

MRI成像CNR基本概念学习

2024-08-30 00:24:06 1177

原创 【MRI基础】视场FOV基本概念

MRI成像视场基本概念

2024-08-30 00:07:08 832

原创 【MRI基础】k空间基本属性

MRI成像的k空间基本概念

2024-08-29 15:56:49 453

原创 【医学图像】X射线成像

X射线成像基本原理介绍和图像质量评估

2024-08-08 15:52:46 999

原创 【医学图像】医学图像基础

医学图像,作为诊断和治疗的基本手段,在最近几十年中不断发展。目前成熟的医学成像技术,包括X射线,CT成像,磁共振MRI成像,PET正电子发射成像,核医学成像,超声成像等等。

2024-08-05 20:56:04 884

原创 【AI】Pytorch 平台随机种子设置说明

Pytorch 平台随机种子设置说明

2024-07-24 15:22:35 385

原创 【MRI重建】基于L+S方法的加速动态成像(MATLAB)

多线圈 L+S MRI图像重建是使用凸优化方法制定的,其中核范数用于强制 L 中的低秩,而 l1 范数用于强制 S 中的稀疏性。

2024-04-29 03:08:09 300

原创 【MRI重建】基于径向采样的GRASP重建实现(matlab)

对比增强MRI和弥散MRI成像,对于时间分辨率要求都比较高,为了捕获高时间空间分辨率,这里使用GRASP方法,重建radial径向采样的MR数据。

2024-04-27 02:19:53 274

原创 【MRI重建】Cartesian采样中data consistency 常规数据一致性实现(pytorch)

在MRI重建中,data consistency 可以帮助加快MRI图像重建和减少模型重建带来的重建误差。

2024-04-27 00:40:12 373 2

原创 【MRI重建】基于radial径向采样的实时介入式多通道磁共振重建

准确的导航和定位对于包括活检和深部脑刺激在内的神经干预至关重要。实时图像引导进一步改善了手术计划,MRI 非常适合术前和术中成像。然而,平衡空间和时间分辨率是实时介入 MRI (i-MRI) 的主要挑战。在这里,提出一种深度展开神经网络,用于实时 i-MRI 重建。通过将重建模型 和定制设计的、与 MR 兼容的介入设备集成到 3 T MRI 扫描仪中,提出了一种实时 MRI 引导的大脑干预系统。Biopsy needle susceptibility artifacts - PubMedInterventi

2024-04-26 23:40:52 270

原创 【信号处理】基于CNN的心电(ECG)信号分类典型方法实现(tensorflow)

本实验使用1维卷积神经网络实现心电信号的5分类。由于数据类别不均衡,这里使用典型的上采样方法,实现数据类别的均衡化处理。

2024-04-21 17:34:03 1100 5

原创 【信号处理】基于CNN自编码器的心电信号异常检测识别(tensorflow)

本项目主要实现卷积自编码器对于异常心电ECG信号的检测和识别,属于无监督学习中的生理信号检测的典型方法之一。

2024-04-21 15:35:06 806

原创 【信号处理】基于EEG脑电信号的自闭症预测典型方法实现

本项目主要实现基于脑电信号的自闭者的早期检测(正常vs非正常),为早期筛查和干预提供及时的预警。

2024-04-21 04:51:35 365 1

原创 【信号处理】心电信号传统R波检测定位典型方法实现(matlab)

心电信号中QRS波检测是一个非常重要的步骤,可以用于实现重要波群的基本定位,在定位基础上,可以进一步分析心电信号的特征变化,从而为医疗诊断提供必要的参考。

2024-04-15 01:43:41 551 2

原创 【域适应】深度域适应常用的距离度量函数实现

深度域适应中,有一类方法是实现目标域和源域的特征对齐,特征对齐的衡量函数主要包括MMD,MK-MMD,A-distance,CORAL loss, Wasserstein distance等等。本文总结了常用的特征变换对齐的函数定义。

2024-04-11 21:58:00 1087

原创 【域适应】基于散度成分分析(SCA)的四分类任务典型方法实现

SCA(scatter component analysis)是基于一种简单的几何测量,即分散,它在再现内核希尔伯特空间上进行操作。SCA找到一种在最大化类的可分离性、最小化域之间的不匹配和最大化数据的可分离性之间进行权衡的表示;每一个都通过分散进行量化。

2024-04-11 18:25:26 365

原创 【域适应】基于域分离网络的MNIST数据10分类典型方法实现

域适应之域分离网络在MNIST数据集上的迁移实现和最终效果可视化。

2024-04-11 17:06:11 588

原创 【域适应】基于深度域适应MMD损失的典型四分类任务实现

MMD (maximum mean discrepancy)是用来衡量两组数据分布之间相似度的度量。一般地,如果两组数据分布相似,那么MMD 损失就相对较小,说明两组数据/特征处于相似的特征空间中。基于这个想法,对于源域和目标域数据,在使用深度学习进行特征提取中,使用MMD损失,可以让模型提取两个域的共有特征/空间,从而实现源域到目标域的迁移。

2024-04-11 15:26:28 992

原创 【域适应】基于迁移成分分析(TCA) 的典型二分类问题(python)

传统预适应方法 transfer component analysis 典型方法实现。

2024-04-11 15:04:25 462

原创 【信号处理】基于变分自编码器(VAE)的脑电信号增强典型方法实现(tensorflow)

在脑电信号分析处理任务中,数据不均衡是一个常见的问题。针对数据不均衡,传统方法有过采样和欠采样方法来应对,但是效果有限。本项目通过变分自编码器对脑电信号进行生成增强,提高增强样本的多样性,从而提高最终的后端分析性能。

2024-04-03 16:01:49 1398 2

原创 【信号处理】基于变分自编码器(VAE)的图片典型增强方法实现

深度学习中,经常面临图片数据量较小的问题,此时,对数据进行增强,显得比较重要。传统的图片增强方法包括剪切,增加噪声,改变对比度等等方法,但是,对于后端任务的性能提升有限。所以,变分自编码器被用来实现深度数据增强。变分自编码器的主要缺点在于生成图像过于平滑和模糊,图像细节重建不足。

2024-04-03 14:32:38 870

原创 【图像合成】基于DCGAN典型网络的MNIST字符生成(pytorch)

DCGAN模型的典型应用和代码实现。

2024-03-28 15:03:15 654 2

原创 【信号处理】基于DGGAN的单通道脑电信号增强和情绪检测(tensorflow)

情绪检测,是脑科学研究中的一个常见和热门的方向。在进行情绪检测的分类中,真实数据不足,经常导致情绪检测模型的性能不佳。因此,对数据进行增强,成为了一个提升下游任务的重要的手段。

2024-03-28 05:15:26 577

原创 信号处理--情绪分类数据集DEAP预处理(python版)

DEAP数据集是一个常用的情绪分类公共数据,在日常研究中经常被使用到。如何合理地预处理DEAP数据集,对于后端任务的成功与否,非常重要。本文主要介绍DEAP数据集的预处理流程。

2024-03-27 00:42:03 2147 12

原创 信号处理--基于DEAP数据集的情绪分类的典型深度学习模型构建

本实验采用DEAP情绪数据集进行数据分类任务。使用了三种典型的深度学习网络:2D 卷积神经网络;1D卷积神经网络+GRU; LSTM网络。

2024-03-27 00:09:09 805 3

原创 信号处理--基于混合CNN和transfomer自注意力的多通道脑电信号的情绪分类的简单应用

本实验为电生理信号专题实验项目。本实验采用卷积神经网络和transfomer相结合的方法,实现了多通道脑电信号的情绪分类任务。情绪共分为三种类别:消极,中性,积极。相比于一般的卷积神经网络和传统机器学习模型,这种混合的模型在分类性能上更有优势。

2024-03-26 22:44:13 1058

原创 信号处理--使用EEGNet进行BCI脑电信号的分类

EEGNet作为一个比较成熟的框架,在BCI众多任务中,表现出不俗的性能。EEGNet 的主要特点包括:1)框架相对比较简单紧凑 2)适合许多的BCI脑电分析任务 3)使用两种卷积 Depth-wise convolution 和 separable convolution 实现普适特征的提取。

2024-03-24 17:05:13 2052 1

原创 信号处理--基于FBCSP滤波方法的运动想象分类

本项目为生物医学课设综合小实验,基于FBCSP滤波方法的运动想象分类。主要介绍了FBCSP算法的主要流程步骤,另外还展示了使用不同的CSP方法变体和特征筛选方法对于最后分类性能的影响。

2024-03-24 04:12:07 1286

AI基础pytorch lightning 基础学习

【AI基础】pytorch lightning 基础学习,完整代码,在安装完必要环境后,可以直接运行,实现模型训练和测试。

2024-09-27

基于EEG脑电信号的自闭症预测典型方法实现 数据集

基于EEG脑电信号的自闭症预测典型方法实现 数据集

2024-09-09

磁共振重建GRAPPA方法手把手教程(matlab版本)

从头到尾将GRAPPA方法的方法讲清楚,适合刚入门磁共振重建的学习。配合里面的讲义,一步一步理解,从而彻底掌握GRAPPA基本方法。

2024-09-09

医学图像处理课件(英文版)

医学图像处理课件(英文版)

2024-08-18

信号处理基于CNN的心电(ECG)信号分类典型方法实现(tensorflow)

【信号处理】基于CNN的心电(ECG)信号分类典型方法实现(tensorflow)

2024-04-29

信号处理-情绪分类数据集DEAP预处理(python版)-channel csv数据

信号处理--情绪分类数据集DEAP预处理(python版)---channel csv数据

2024-04-19

信号处理基于变分自编码器(VAE)的脑电信号增强典型方法实现(tensorflow)

【信号处理】基于变分自编码器(VAE)的脑电信号增强典型方法实现(tensorflow)

2024-04-03

信号处理基于变分自编码器(VAE)的图片增强方法

【信号处理】基于变分自编码器(VAE)的图片增强方法

2024-04-03

图像合成基于DCGAN典型网络的MNIST字符生成(pytorch)

图像合成基于DCGAN典型网络的MNIST字符生成(pytorch)

2024-03-28

信号处理基于DGGAN的单通道脑电信号增强和情绪检测(tensorflow)

信号处理基于DGGAN的单通道脑电信号增强和情绪检测(tensorflow)

2024-03-28

信号处理-基于DEAP数据集的情绪分类的典型深度学习模型构建(tensorflow版本)

信号处理--基于DEAP数据集的情绪分类的典型深度学习模型构建; 实现2D 卷积神经网络;1D卷积神经网络+GRU;LSTM网络在DEAP数据集上面的分类应用。

2024-03-27

信号处理-情绪分类数据集DEAP预处理(python版)

DEAP原始数据预处理全流程; 基于python环境下的mne库函数。

2024-03-27

信号处理-基于transfomer自注意力的多通道脑电信号的情绪分类的简单应用; 完整数据和pytorch代码实现;

信号处理--基于transfomer自注意力的多通道脑电信号的情绪分类的简单应用; 完整数据和pytorch代码实现; 使用jupyter notebook进行项目开发,有一定的注解,新手小白可快速入门和掌握代码的基本逻辑结构和运行顺序(src文件)。 根据环境脚本,自行配置简单环境。

2024-03-26

信号处理-使用EEGNet进行BCI脑电信号的分类

信号处理--使用EEGNet进行BCI脑电信号的分类 pytorch 代码; 适合刚入门的小白,研读代码,调试和改进代码。

2024-03-24

信号处理-基于FBCSP滤波方法的运动想象分类 python代码

代码可读性强; 条理清晰; 适合小白进行阅读和复现;

2024-03-24

基于特征加权稀疏化和正则化的CSP 脑电信号处理分析; matlab 代码

基于特征加权稀疏化和正则化的CSP 脑电信号处理分析; 有问题,在方便时候,可以咨询博主。

2024-03-18

基于聚合法的正则化共模态空间CSP matlab 代码; 脑电信号处理

基于聚合法的正则化共模态空间CSP matlab 代码; 脑电信号处理。 有问题,可以私信博主,进行解答。

2024-03-18

信号处理-基于Fisher分数的通道选择的多通道脑电信号情绪识别

信号处理-基于Fisher分数的通道选择的多通道脑电信号情绪识别

2024-03-12

基于gumbel-softmax方法实现运动想象分类的通道选择

基于gumbel-softmax方法实现运动想象分类的通道选择

2024-03-12

MATLAB -传统 GRAPPA MRI 重建 完整代码和数据

MATLAB --传统 GRAPPA MRI 重建 完整代码和数据

2024-03-06

BART 压缩感知并行重建:多种方法比较 完整代码 Linux

BART 压缩感知并行重建:多种方法比较 完整代码 Linux

2024-03-06

信号处理-多分辨率单通道注意力脑电睡眠分类 完整代码

信号处理--多分辨率单通道注意力脑电睡眠分类 完整代码

2024-03-05

信号处理-使用核支持向量机实现脑电眼部状态的分类 使用数据

信号处理--使用核支持向量机实现脑电眼部状态的分类 使用数据

2024-03-05

信号处理-基于EEG脑电信号的深度学习情绪分类 使用数据

信号处理--基于EEG脑电信号的深度学习情绪分类 使用数据

2024-03-05

信号处理-基于EEG脑电信号的抑郁症识别分类项目 使用数据

信号处理--基于EEG脑电信号的抑郁症识别分类项目 使用数据

2024-03-05

自定义 confusion matrix计算和绘制 matlab

常用的matlab机器学习中的confusion matrix的计算和绘制。 输入为预测标签和真实标签。可用于二分类,多分类等任务中。 不需要matlab额外的toolbox,即插即用,方便快捷,代码注释详细, 一读就懂,就会使用。

2023-04-03

数值优化之基于谱分解的均匀线阵旁瓣电平最小化问题求解(附matlab源代码和可视化)

天线阵列(或阵列天线)是一组连接的多个天线,它们作为单个天线一起工作,以发射或接收无线电波。单个天线(称为元件)通常通过馈线连接到单个接收器或发射器,馈线以特定相位关系将功率馈送到元件。每个单独天线辐射的无线电波组合和叠加,加在一起(建设性干扰)以增强在所需方向上辐射的功率,并抵消(破坏性干扰)以减少在其他方向上辐射的功率。类似地,当用于接收时,来自各个天线的单独射频电流在接收器中以正确的相位关系组合以增强从期望方向接收的信号并消除来自不期望方向的信号。更复杂的阵列天线可能具有多个发射器或接收器模块,每个模块都连接到一个单独的天线元件或一组元件。 与单个元件相比,天线阵列可以实现更高的增益(方向性),即更窄的无线电波波束。一般来说,使用的单个天线元件的数量越多,增益越高,波束越窄。一些天线阵列(如军用相控阵雷达)由数千个单独的天线组成。阵列可用于实现更高的增益、提供路径分集(也称为MIMO),从而提高通信可靠性、消除来自特定方向的 干扰、以电子方式引导无线电波束指向不同的方向,以及无线电测向(RDF)。

2022-09-07

数值优化之任意二维阵列的最小波束宽度问题求解(附matlab源代码求解和可视化)

天线测量技术是指对天线进行测试,以确保天线符合规格或只是对其进行表征。天线的典型参数是增益、带宽、辐射方向图、波束宽度、极化和阻抗。 天线方向图是天线对从给定方向入射的平面波的响应或天线在给定方向发射的波的相对功率密度。对于倒易天线,这两个方向图是相同的。已经开发了多种天线方向图测量技术。开发的第一个技术是远场范围,其中被测天线 (AUT) 放置在范围天线的远场中。由于为大型天线创建远场范围所需的尺寸,开发了近场技术,允许在靠近天线的表面上测量场(通常是其波长的 3 到 10 倍)。然后预测该测量在无穷远处是相同的. 第三种常用方法是紧凑范围,它使用反射器在 AUT 附近创建一个看起来近似平面波的场。

2022-09-07

最小二乘法简单求解(附matlab源代码和过程可视化,容易理解)

最小二乘法简单求解, 最小二乘法是回归分析中的一种标准方法,通过最小化残差的平方和(残差是观察值和模型提供的拟合值)在每个单独方程的结果中得出。 最重要的应用是数据拟合。当问题在自变量(x变量)中有很大的不确定性时,简单回归和最小二乘法就会出现问题;在这种情况下,可以考虑拟合变量误差模型所需的方法,而不是最小二乘法。 最小二乘问题分为两类:线性或普通最小二乘和非线性最小二乘,这取决于残差在所有未知数中是否是线性的。线性最小二乘问题出现在统计回归分析中;它有一个封闭形式的解决方案。非线性问题通常通过迭代细化来解决;在每次迭代中,系统都近似为线性系统,因此两种情况下的核心计算都是相似的。 多项式最小二乘法将因变量预测中的方差描述为自变量的函数以及与拟合曲线的偏差。 当观测来自一个指数族,其自然充分统计量和温和条件得到满足(例如,对于正态分布、指数分布、泊松分布和二项分布),标准化最小二乘估计和最大似然估计是相同的。[1]最小二乘法也可以作为矩估计法推导出来。 以下讨论主要是根据线性函数提出的,但最小二乘法的使用对于更一般的函数族是有效和实用的。此外,通过迭代地将局部二次近似应用

2022-09-07

不等式约束下的线性规划简单求解(附matlab原代码和过程可视化,方便求解和理解)

不等式约束下的线性规划; 线性规划(LP),也称为线性优化,是一种在其要求由线性关系表示的数学模型中实现最佳结果(例如最大利润或最低成本)的方法。线性规划是数学规划(也称为数学优化)的一种特殊情况。更正式地说,线性规划是一种优化线性 目标函数的技术,受线性等式和线性不等式 约束。它的可行域是一个凸多面体,它是一个集合,定义为有限多个半空间的交集,每个半空间都由一个线性不等式定义。它的目标函数是定义在这个多面体上的实值仿射(线性)函数。线性规划算法在多面体中找到一个点如果存在这样的点,则此函数具有最小(或最大值)值。 出于多种原因,线性规划是一个广泛使用的优化领域。运筹学中的许多实际问题可以表示为线性规划问题。线性规划的某些特殊情况,例如网络流问题和多商品流问题,被认为足够重要,可以对专门的算法进行大量研究。许多其他类型的优化问题的算法通过将线性规划问题作为子问题来解决。从历史上看,线性规划的思想启发了优化理论的许多核心概念,例如对偶性、 分解和凸性的重要性及其概括。

2022-09-07

数值优化之等式约束下的范数最小问题求解(附matlab原始求解代码和可视化,容易理解和剖析)

等式约束下的范数最小问题求解; 在数学中,范数是从实数或复数向量空间到非负实数的函数,其行为方式类似于到原点的距离:它与缩放对易,服从三角不等式的形式,并且为零只在原点。具体来说,向量到原点的欧几里得距离是一个范数,称为欧几里得范数或2-范数,也可以定义为向量与其自身 的内积的平方根。半范数满足范数的前两个属性,但对于除原点以外的向量可能为零。[1]具有指定范数的向量空间称为范数向量空间。以类似的方式,具有半范数的向量空间称为半范数向量空间。 在受约束的最小二乘法中,通过对解的附加约束来解决线性最小二乘问题。即无约束方程{\displaystyle \mathbf {X} {\boldsymbol {\beta }}=\mathbf {y} }\mathbf {X} {\boldsymbol {\beta }}=\mathbf {y}必须尽可能紧密地拟合(在最小二乘意义上),同时确保{\displaystyle {\boldsymbol {\beta }}}{\boldsymbol {\beta }}得到维护。

2022-09-07

数值优化之非负矩阵分解应用(附可运行matlab代码和较好的可视化)

1 非负矩阵分解(NMF或NNMF),也是非负矩阵逼近是多元分析和线性代数中的一组算法,其中矩阵V被分解为(通常)两个矩阵W和H ,具有所有三个矩阵都没有负元素的性质。这种非负性使生成的矩阵更容易检查。此外,在处理音频频谱图或肌肉活动等应用中,非负性是所考虑的数据所固有的。由于该问题通常不能完全解决,因此通常用数值近似。 2 适合机器学习,数值优化,图像处理,信号处理等专业的初学者进行分析和学习。 3 语音去噪一直是音频信号处理中长期存在的问题。如果噪声是静止的,则有许多去噪算法。例如,维纳滤波器适用于加性高斯噪声。然而,如果噪声是非平稳的,经典的去噪算法通常性能较差,因为非平稳噪声的统计信息难以估计。施密特等人。使用NMF在非平稳噪声下进行语音去噪,这与经典的统计方法完全不同。关键思想是干净的语音信号可以用语音字典稀疏地表示,但非平稳噪声不能。类似地,非平稳噪声也可以用噪声字典稀疏表示,但语音不能。NMF去噪算法如下。两个字典,一个用于语音,一个用于噪声,需要离线训练。

2022-09-07

数值优化应用之最小相位谱分解(附matlab详细代码和讲解,清晰易懂,适合初学者)

数值优化:最小相位谱分析, 适合信号图像处理,机器学习的初学者分析学习。 在控制理论和信号处理中,如果系统及其逆是因果且稳定的,则称线性时不变系统是最小相位的。 最一般的因果 LTI传递函数可以唯一地分解为一系列全通和最小相位系统。系统函数是两部分的乘积,在时域中,系统的响应是两部分响应的卷积。最小相位和一般传递函数之间的区别在于,最小相位系统的传递函数的所有极点和零点都位于 s 平面表示的左半部分(在离散时间内,分别在z 平面)。由于反转系统函数会导致极点变为零,反之亦然,并且右侧的极点(s平面 虚线)或复平面外(z平面 单位圆)导致系统不稳定,反演下只有最小相位系统类是闭合的。直观地说,一般因果系统的最小相位部分以最小的群延迟实现其幅度响应,而其全通部分仅校正其相位响应以与原始系统函数相对应。 极点和零点的分析仅在传递函数的情况下是准确的,传递函数可以表示为多项式的比率。在连续时间的情况下,这样的系统转化为传统的、理想化的LCR 网络的网络。在离散时间中,它们可以方便地转化为近似值,使用加法、乘法和单位延迟。可以证明,在这两种情况下,具有递增阶的有理形式的系统函数

2022-09-07

机器学习 支持向量机分类器使用

支持向量机使用不同基函数对分类结果的影响; 附带高质量数据集,可以重复使用,修改测试代码; 加深对于支持向量机的理解和应用; 适合机器学习初学者,巩固基础知识,强化基础理论的学习和应用。

2022-08-30

机器学习 naive 贝叶斯分类器实现 (附原始matlab代码和数据集)

主要适用于机器学习初学者,掌握基础理论; 可以在高质量数据集上面,修改测试代码,更好的掌握 naive Bayes 分类器理论和实际应用; 理解分类器的实际价值和局限性所在。 朴素贝叶斯是一种构建分类器的简单技术:将类标签分配给问题实例的模型,表示为特征值的向量,其中类标签是从某个有限集合中提取的。训练此类分类器的算法不是单一的,而是基于共同原则的一系列算法:所有朴素贝叶斯分类器都假设特定特征的值独立于任何其他特征的值,给定类变量。例如,如果一个水果是红色的、圆形的、直径约 10 厘米,则可以认为它是苹果。朴素贝叶斯分类器认为这些特征中的每一个都独立地贡献于该水果是苹果的概率,而不管任何可能颜色、圆度和直径特征之间的 相关性。 在许多实际应用中,朴素贝叶斯模型的参数估计使用最大似然法;换句话说,可以在不接受贝叶斯概率或使用任何贝叶斯方法的情况下使用朴素贝叶斯模型。 尽管朴素的设计和明显过于简单的假设,朴素贝叶斯分类器在许多复杂的现实世界情况下工作得很好。

2022-08-30

Statistic number analysis.pdf

各类实验数据基本统计分析量计算

2021-03-10

SMOTE结合SVM算法matlab实现

SMOTE结合SVM算法实现,混合交叉验证,寻找最优参数之后,得出分类性能指标

2019-03-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除