- 博客(9)
- 资源 (1)
- 收藏
- 关注
原创 免疫算法详解
基本思想是将想要求解的各类优化问题的目标函数(约束条件)与抗原相对应,找到可以与抗原进行亲和反应的抗体,该抗体就是要求的最优解。最核心要解决的就是1.计算抗原和抗体的亲和度,亲和度越高,越可能是最优解,2.计算抗体和抗体间的相似度,调查抗体群具有的多样性。IA是必须要产生多样性抗体和抗原去抗衡。具体的流程图如下:计算方式:信息熵利用信息理论,用抗体的信息量去描述抗体的多样性,以及...
2019-01-03 10:01:28 15744 4
原创 spark--基础scala
scala环境搭建:Java环境搭建scala安装集成环境IDEA具体可以参考:https://blog.csdn.net/guiying712/article/details/68947747
2019-01-03 10:01:01 151
原创 panda数据分析
1.将离散变量进行ONE-HOT编码在作为示例的租房数据中,分类变量 neighborhood 可以对应三个值:运用 Scikit-Learn 中的 DictVectorizer 函数,我们将以上租房数据的分类变量转换为 one-hot 形式one-hot编码可以通过调用 getfeaturenames 函数,来查看转换后的数组中对应的列名:...
2019-01-03 10:00:29 719
原创 智能算法-蚁群算法详解
蚁群算法的基本思想来源于自然界蚂蚁觅食的最短路径原理,根据昆虫科学家的观察,发现自然界的蚂蚁虽然视觉不发达,但它们可以在没有任何提示的情况下找到从食物源到巢穴的最短路径,并在周围环境发生变化后,自适应地搜索新的最佳路径。蚂蚁在寻找食物源的时候,能在其走过的路径上释放一种叫信息素的激素,使一定范围内的其他蚂蚁能够察觉到。当一些路径上通过的蚂蚁越来越多时,信息素也就越来越多,蚂蚁们选择这条路径的概...
2019-01-03 09:50:18 506
原创 EM算法
EM算法要解决什么养的问题呢?给定一组数据,没有标签,我们要找出数据符合的模型,以及数据对应的分类假设X表示数据样本,样本可能对应的类别为Z,假设我们知道样本服从与某种分布,这样我们可以通过EM来计算出,该分部的参数,和样本对应的类别,实现对样本的分类。通常从样本观察数据,找出样本的模型参数(方法:极大化模型分布的对数似然函数),但是在一些情况下,我们得到的观察数据有未观察到的隐含数...
2019-01-03 09:49:02 182
原创 spark常用算子详解
1.map()接收一个函数,对于RDD中的每一个元素执行此函数操作,结果作为返回值。eg: val rdd = sc.parallelize(Array(1, 2, 3, 4), 1) rdd.map(x => x*x).foreach(println) //x => x*x:将元素x做平方处理,scala语句SparkCont...
2019-01-03 09:48:19 529
转载 eclipse环境搭建
https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R2/eclipse-inst-win64.exe&mirror_id=1272下载eclipse官方集成环境
2019-01-03 09:34:11 253
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人