线段相交-----模板
You can Solve a Geometry Problem too
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6149 Accepted Submission(s): 2957
Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.
Note:
You can assume that two segments would not intersect at more than one point.
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.
Note:
You can assume that two segments would not intersect at more than one point.
Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
A test case starting with 0 terminates the input and this test case is not to be processed.
A test case starting with 0 terminates the input and this test case is not to be processed.
Output
For each case, print the number of intersections, and one line one case.
Sample Input
2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0
Sample Output
1 3
模板一:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#define eps 1e-10
using namespace std;
struct Point
{
double x,y;
}p[220];
bool inter(Point a,Point b,Point c,Point d)
{
if(min(a.x,b.x)>max(c.x,d.x)||
min(a.y,b.y)>max(c.y,d.y)||
min(c.x,d.x)>max(a.x,b.x)||
min(c.y,d.y)>max(a.y,b.y))
return 0;
double h,i,j,k;
h=(b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
i=(b.x-a.x)*(d.y-a.y)-(b.y-a.y)*(d.x-a.x);
j=(d.x-c.x)*(a.y-c.y)-(d.y-c.y)*(a.x-c.x);
k=(d.x-c.x)*(b.y-c.y)-(d.y-c.y)*(b.x-c.x);
return h*i<=eps&&j*k<=eps;
}
int main()
{
int n,i,j,ans;
while(~scanf("%d",&n))
{
if(!n)break;
ans=0;
for(i=0;i<=n*2-2;i+=2)
{
scanf("%lf%lf%lf%lf",&p[i].x,&p[i].y,&p[i+1].x,&p[i+1].y);
}
for(i=0;i<=(n-1)*2-2;i+=2)
{
for(j=i+2;j<=n*2-2;j+=2)
{
if(inter(p[i],p[i+1],p[j],p[j+1]))
ans++;
}
}
printf("%d\n",ans);
}
return 0;
}
模板二:
#include<stdio.h>
#include<math.h>
#include<iostream>
using namespace std;
struct Line
{
double x1,y1,x2,y2;
}node[110];
bool solve(Line a,Line b)
{
if(((a.x1-b.x1)*(a.y2-b.y1)-(a.x2-b.x1)*(a.y1-b.y1))*((a.x1-b.x2)*(a.y2-b.y2)-(a.x2-b.x2)*(a.y1-b.y2))>0)return false;
if(((b.x1-a.x1)*(b.y2-a.y1)-(b.x2-a.x1)*(b.y1-a.y1))*((b.x1-a.x2)*(b.y2-a.y2)-(b.x2-a.x2)*(b.y1-a.y2))>0)return false;
return true;
}
int main()
{
int n;
while(scanf("%d",&n),n)
{
for(int i=0;i<n;i++)scanf("%lf%lf%lf%lf",&node[i].x1,&node[i].y1,&node[i].x2,&node[i].y2);
int res=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(solve(node[i],node[j]))res++;
}
}
printf("%d\n",res);
}
return 0;
}
自我感觉第二种更加简洁点,虽然我是用第一种模板过的