hdu-人见人爱A^B

hdu-人见人爱A^B解题报告

Problem Description
求A^B的最后三位数表示的整数。
说明:A^B的含义是“A的B次方”
 

Input
输入数据包含多个测试实例,每个实例占一行,由两个正整数A和B组成(1<=A,B<=10000),如果A=0, B=0,则表示输入数据的结束,不做处理。
 

Output
对于每个测试实例,请输出A^B的最后三位表示的整数,每个输出占一行。
 

Sample Input
  
  
2 3 12 6 6789 10000 0 0
 

Sample Output
  
  
8 984 1
 

这个题目是个水题,之所以我写一个关于这个题目的解题报告,是因为里面涉及到一个很常见的问题。就是溢出.......

这个题目,用到一个结论,那就是关于模的一个性质

例如求  (5*5*5)%3......结果为2

可以分解为    

5 % 3  * 5 % 3 * 5 % 3  = 2 * 2 * 2 ...........(1)

(2 * 2)% 3 = 1.....................(2)

(1 * 2)% 3 = 2.....................(3)

先附上代码吧:

#include<stdio.h>
#include<math.h>
int main()
{
    int a,b,c,i,temp;
    while(~scanf("%d %d",&a,&b))
    {
        if(a==0&&b==0)break;
        for(i=1,c=a%1000;i<b;i++)//注意这一段的处理方法,很重要。
        {
            a=a%1000;
            temp=a*c%1000;
            a=temp;
        }
        printf("%d\n",temp);
    }
    return 0;
}

在刘汝佳编的那本算法竞赛中我看到了一个类似的题:

阶乘之和

输入n,计算s=1!+2!+3!+.........+n!的末6位(不含前导0)。n<=10的6次方。这里,n!表示前n个正整数之积。

样例输入:10

样例输出:37913

#include<stdio.h>
int main()
{
    const int MOD=1000000;
    int i,j,n,s=0;
    scanf("%d",&n);
    for(i=1;i<=n;i++)
    {
        int factorial=1;
        for(j=1;j<=i;j++)
            factorial=(factorial*j%MOD);
        s=(s+factorial)%MOD;
    }
    printf("%d\n",s);
    return 0;
}

方法总结:要计算只包含加法、减法和乘法的整数表达式除以正整数n的余数,可以在每步计算之后对n取余,结果不变。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值