hdu-人见人爱A^B解题报告
Problem Description
求A^B的最后三位数表示的整数。
说明:A^B的含义是“A的B次方”
说明:A^B的含义是“A的B次方”
Input
输入数据包含多个测试实例,每个实例占一行,由两个正整数A和B组成(1<=A,B<=10000),如果A=0, B=0,则表示输入数据的结束,不做处理。
Output
对于每个测试实例,请输出A^B的最后三位表示的整数,每个输出占一行。
Sample Input
2 3 12 6 6789 10000 0 0
Sample Output
8 984 1
这个题目,用到一个结论,那就是关于模的一个性质
例如求 (5*5*5)%3......结果为2
可以分解为
5 % 3 * 5 % 3 * 5 % 3 = 2 * 2 * 2 ...........(1)
(2 * 2)% 3 = 1.....................(2)
(1 * 2)% 3 = 2.....................(3)
先附上代码吧:
#include<stdio.h>
#include<math.h>
int main()
{
int a,b,c,i,temp;
while(~scanf("%d %d",&a,&b))
{
if(a==0&&b==0)break;
for(i=1,c=a%1000;i<b;i++)//注意这一段的处理方法,很重要。
{
a=a%1000;
temp=a*c%1000;
a=temp;
}
printf("%d\n",temp);
}
return 0;
}
在刘汝佳编的那本算法竞赛中我看到了一个类似的题:
阶乘之和
输入n,计算s=1!+2!+3!+.........+n!的末6位(不含前导0)。n<=10的6次方。这里,n!表示前n个正整数之积。
样例输入:10
样例输出:37913
#include<stdio.h>
int main()
{
const int MOD=1000000;
int i,j,n,s=0;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
int factorial=1;
for(j=1;j<=i;j++)
factorial=(factorial*j%MOD);
s=(s+factorial)%MOD;
}
printf("%d\n",s);
return 0;
}
方法总结:要计算只包含加法、减法和乘法的整数表达式除以正整数n的余数,可以在每步计算之后对n取余,结果不变。