描述 | |
---|---|
知识点 | 查找,搜索,排序 |
运行时间限制 | 10M |
内存限制 | 128 |
输入 | 输入说明 |
输出 | 求得的“最佳方案”组成“素数伴侣”的对数。 |
样例输入 | 4 2 5 6 13 |
样例输出 | 2 |
方法一:穷举
#include <iostream>
#include <math.h>
#include <algorithm>
using namespace std;
bool Isprimer(int n)
{
int flag=1;
if (n<2)
return false;
if (n==2)
return true;
for (int i=2;i<=sqrt(double(n));i++)
if (n%i==0)
{
flag=0;
break;
}
if(flag)
return true;
else
return false;
}
bool Primer_patener(int x,int y)
{
if(Isprimer(x+y))
return true;
else
return false;
}
int main()
{
int N,a[100];
int max=0;
cin>>N;
if (N%2!=0 || N>100)
return -1;
for (int i=0;i<N;i++)
cin>>a[i];
sort(a,a+N);
while (next_permutation(a,a+N)) //穷举每一种组合
{
int k=0;
for(int j=0;j<N;j+=2)
if (Primer_patener(a[j],a[j+1]))
k++;
if (max<k)
max=k;
}
cout<<max<<endl;
}
方法二:应该是动态规划的方法,谁看懂了给我讲讲,谢谢!
#include<iostream>
using namespace std;
int isPrime(unsigned int n)
{
// Code Here
unsigned int i;
if(n<2)
{
return 0;
}
for(i=2;i<=n/2;i++)
{
if(0==n%i)
{
return 0;
}
}
return 1;
}
unsigned int CalcNum(unsigned int *Input,unsigned int InputNum)
{
/* 代码在这里实现 */
int i,j;
unsigned int cnt;
unsigned int dp[100]={0};
if((NULL==Input)||(InputNum<1)||(InputNum%2))
{
return 0;
}
for(i=InputNum-2;i>=0;i--)
{
for(j=InputNum-1;j>i;j--)
{
cnt = isPrime(Input[i] + Input[j]) ? (dp[i + 1] - dp[j - 1] + dp[j + 1] + 1):dp[i+1];//神马意思?
dp[i] = (cnt>dp[i]) ? cnt:dp[i]; <span style="white-space:pre"> </span>//上面这句不知道你是否看懂了,反正我是没看懂额
}
}
return dp[0];
}
int main()
{
int n;
cin>>n;
unsigned int *input=new unsigned int[n];
for(int i=0;i<n;i++)
cin>>input[i];
cout<<CalcNum(input,n);
//system("pause");
return 0;
}
下面是从OJ上看到的别人的评论:
有人说,上面的dp解法是凑巧的,实际不对,应该用二分图。见识太少,不懂神马是二分图,~~~~(>_<)~~~~,多读书吧,少年!