华为OJ(素数伴侣)

描述

题目描述
若两个正整数的和为素数,则这两个正整数称之为“素数伴侣”,如2和5、6和13,它们能应用于通信加密。现在密码学会请你设计一个程序,从已有的N(N为偶数)个正整数中挑选出若干对组成“素数伴侣”,挑选方案多种多样,例如有4个正整数:2,5,6,13,如果将5和6分为一组中只能得到一组“素数伴侣”,而将2和5、6和13编组将得到两组“素数伴侣”,能组成“素数伴侣”最多的方案称为“最佳方案”,当然密码学会希望你寻找出“最佳方案”。

输入:

有一个正偶数N(N≤100),表示待挑选的自然数的个数。后面给出具体的数字,范围为[2,30000]。

输出:

输出一个整数K,表示你求得的“最佳方案”组成“素数伴侣”的对数。

 

知识点 查找,搜索,排序
运行时间限制 10M
内存限制 128
输入

输入说明
1 输入一个正偶数n
2 输入n个整数

输出

求得的“最佳方案”组成“素数伴侣”的对数。

样例输入 4 2 5 6 13
样例输出 2
终于体会到木有注释的代码不是好代码,看不懂啊,只有穷举法容易懂~~o(>_<)o ~~,自己还是尽量写些注释吧。

方法一:穷举

#include <iostream>
#include <math.h>
#include <algorithm>
using namespace std;
bool Isprimer(int n)
{
	int flag=1;
	if (n<2)
		return false;
	if (n==2)
		return true;
	for (int i=2;i<=sqrt(double(n));i++)
		if (n%i==0)
		{
			flag=0;
			break;
		}
		if(flag)
			return true;
		else
			return false;
}

bool Primer_patener(int x,int y)
{
	if(Isprimer(x+y))
		return true;
	else
		return false;
}

int main()
{
	int N,a[100];
	int max=0;
	cin>>N;
	if (N%2!=0 || N>100)
		return -1;
	for (int i=0;i<N;i++)
		cin>>a[i];
	sort(a,a+N);
	while (next_permutation(a,a+N))  //穷举每一种组合
	{
		int k=0;
		for(int j=0;j<N;j+=2)
			if (Primer_patener(a[j],a[j+1]))
				k++;
		if (max<k)
			max=k;
	}
	cout<<max<<endl;
}

方法二:应该是动态规划的方法,谁看懂了给我讲讲,谢谢!

#include<iostream>
using namespace std;

int isPrime(unsigned int n)
{
    // Code Here
	unsigned int i;
	if(n<2)
	{
		return 0;
	}
	for(i=2;i<=n/2;i++)
	{
		if(0==n%i)
		{
			return 0;
		}
	}
	return 1;
}
unsigned int CalcNum(unsigned int *Input,unsigned int InputNum)
{
	/* 代码在这里实现 */
	int i,j;
	unsigned int cnt;
	unsigned int dp[100]={0};
	if((NULL==Input)||(InputNum<1)||(InputNum%2))
	{
		return 0;
	}
	for(i=InputNum-2;i>=0;i--)
	{
        for(j=InputNum-1;j>i;j--) 
		{
            cnt = isPrime(Input[i] + Input[j]) ? (dp[i + 1] - dp[j - 1] + dp[j + 1] + 1):dp[i+1];//神马意思?  
			dp[i] = (cnt>dp[i]) ? cnt:dp[i];  <span style="white-space:pre">	</span>//上面这句不知道你是否看懂了,反正我是没看懂额
        }         
    }  
    return dp[0]; 
}

int main()
{
	int n;
	cin>>n;
	unsigned int *input=new unsigned int[n];
	for(int i=0;i<n;i++)
		cin>>input[i];
	cout<<CalcNum(input,n);
	//system("pause");
	return 0;
}
下面是从OJ上看到的别人的评论:

有人说,上面的dp解法是凑巧的,实际不对,应该用二分图。见识太少,不懂神马是二分图,~~~~(>_<)~~~~,多读书吧,少年!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值