阿里巴巴面试算法题——现场手撕LRU,拒绝懵der

11 篇文章 0 订阅

在这里插入图片描述

LRU介绍

  • LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间 t,当须淘汰一个页面时,选择现有页面中其 t 值最大的,即最近最少使用的页面予以淘汰。——《百科词条》
  • LRU是常见算法,详情可查阅相关算法资料,本文不再赘述

题目

实现一个LRU缓存,要求:获取、存储缓存操作的时间复杂度为O(1)​

分析

  1. 存储key、value:使用哈希表
  2. 使用链表
    • 数据有先后顺序
    • O(1)时间复杂度内调整节点顺序
  3. 获取缓存,未命中:返回-1
  4. 获取缓存,命中:返回缓存并将缓存移至链表头部
  5. 写入缓存,已存在:更新缓存并将缓存移至链表头部
  6. 写入缓存,不存在:写入缓存(在链表头部)
  7. 写入缓存,超出缓存容量:删除最久未使用的缓存
    在这里插入图片描述

题解

public class LRUCache {
  int capacity, size;
  // 1. 存储key、value:使用哈希表
  Map<Integer, DoubleLinkedNode> map = new HashMap<>();
  // 2. 使用链表
  DoubleLinkedNode dummyHead, dummyTail;public LRUCache(int capacity) {
    this.capacity = capacity;
    dummyHead = new DoubleLinkedNode();
    dummyTail = new DoubleLinkedNode();
    dummyHead.next = dummyTail;
    dummyTail.pre = dummyHead;
  }/**
   * 获取缓存
   *
   * @param key
   * @return
   */
  public int get(int key) {
    // 3. 获取缓存,未命中:返回-1
    if (!map.containsKey(key)) {
      return -1;
    }
    // 4. 获取缓存,命中:返回缓存并将缓存移至链表头部
    DoubleLinkedNode node = map.get(key);
    moveToHead(key, node);
    return node.value;
  }/**
   * 写入缓存
   *
   * @param key
   * @param value
   */
  public void put(int key, int value) {
    if (map.containsKey(key)) {
      // 5. 写入缓存,已存在:更新缓存并将缓存移至链表头部
      DoubleLinkedNode node = map.get(key);
      node.value = value;
      moveToHead(key, node);
    } else {
      // 6. 写入缓存,不存在:写入缓存(在链表头部)
      DoubleLinkedNode node = new DoubleLinkedNode(key, value);
      add(key, node);
      // 7. 写入缓存,超出缓存容量:删除最久未使用的缓存
      if (size > capacity) {
        DoubleLinkedNode tail = dummyTail.pre;
        remove(tail);
      }
    }
  }/**
   * 将节点移至头部
   *
   * @param key
   * @param node
   */
  private void moveToHead(int key, DoubleLinkedNode node) {
    remove(node);
    add(key, node);
  }/**
   * 添加节点
   *
   * @param key
   * @param node
   */
  private void add(int key, DoubleLinkedNode node) {
    // 添加到链表头部
    node.pre = dummyHead;
    node.next = dummyHead.next;
    dummyHead.next.pre = node;
    dummyHead.next = node;
    // 添加到map中
    map.put(key, node);
    size++;
  }/**
   * 删除node
   *
   * @param node
   */
  private void remove(DoubleLinkedNode node) {
    // 从链表中删除
    node.pre.next = node.next;
    node.next.pre = node.pre;
    // 从map中删除
    map.remove(node.key);
    size--;
  }/** 定义双链表节点 */
  class DoubleLinkedNode {
    int key, value;
    // 前一个节点
    DoubleLinkedNode pre;
    // 后一个节点
    DoubleLinkedNode next;DoubleLinkedNode() {}DoubleLinkedNode(int key, int value) {
      this.key = key;
      this.value = value;
    }
  }
}

写在最后

工作中可使用Java的LinkedHashMap,一个简单示例

public class LRUCache extends LinkedHashMap<Integer, Integer> {
  private int capacity;public LRUCache(int capacity) {
    super(capacity, 0.8F, true);
    this.capacity = capacity;
  }/**
   * 获取缓存
   *
   * @param key
   * @return
   */
  public int get(int key) {
    return super.getOrDefault(key, -1);
  }/**
   * 写入缓存
   *
   * @param key
   * @param value
   */
  public void put(int key, int value) {
    super.put(key, value);
  }/**
   * 超出缓存容量,删除最久未使用的缓存
   *
   * @param eldest
   * @return
   */
  @Override
  protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
    return size() > this.capacity;
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胡矣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值