自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 PyTorch学习不踩坑(第七讲 实战案例)

谁知此石自经煅炼之后,灵性已通,因见众石俱得补天,独自己无材不堪入选,遂自怨自叹,日夜悲号惭愧。当然,毫无疑问,算法确实是枯燥乏味,但是前期只要会使用就行啦。logger.info(f'Sentiment: {"好评" if prediction.item() == 1 else "差评"}')这个案例中,我们会用预训练的Stable Diffusion模型,输入一段文字(比如“一只穿披风的猫”),直接生成图像。tone = input("语气(专业/亲切/正式): ").strip() or "专业"

2025-10-09 23:25:21 349

原创 第一讲 本地部署AI平台Dify 《小白快速进阶智能体大师》

由此开始,我也会逐步给大家讲解如何编写插及搭建工作流,包括如何建立知识库(不管有没有编码能力,我们可以借助Cursor或者其他编码工具完成开发。‌企业级安全‌:提供私有化部署方案,支持 HTTPS / TLS 加密传输、多租户数据隔离等技术,满足高敏感行业合规要求。这个是dify默认的。‌多模型支持‌:原生集成 LLM ( 大型语言模型 )、 RAG ( 检索增强 )等工具,可一键接入全球大模型。自己训练的小模型(后期我会讲怎么训练自己个人小模型的哈),本地就能跑起来使用,直接接到dify里面就行。

2025-09-13 22:32:39 950

原创 为什么想要写智能体开发相关的课程?

以前我们做前端,是“用户触发-请求-响应-渲染”的模式,流程是线性的、可预测的。但现在智能体的交互,是“用户输入-意图理解-多步决策-动态执行-结果返回”,中间可能还要调用工具、查询知识库、执行工作流,甚至反复和用户确认。比如智能体在和你对话的过程中,突然返回一个表单让你填,或生成一个图表让你看,这都是可能的。重要的是,不仅要会“用”,还要理解它背后的逻辑:它是怎么调度模型的?最重要的是,你会发现:智能体开发,并不是要你从头造轮子,而是站在现有技术和大模型能力之上,重新思考“交互如何发生”。

2025-09-10 22:05:54 654

原创 PyTorch学习不踩坑(第六讲 神经网络模型及模型训练过程&概念篇)

但是训练模型虽然没有看到的那么简单,但是我认为都是有规律有步骤的。只要我们多学习别人的方法,就能训练出自己的小模型。选定网络结构后,深度学习训练过程基本大同小异,后面都是反复调整模型参数的过程了。,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。下面的图表是几乎所有神经网络模型都会用到的底层数学算法,用于调整网络参数(权重),以最小化预测误差。在这里,我们用一个常见且简单的案例来讲解模型训练过程,便于我们快速理解。​数据准备​、模型构建​、训练循环​、验证与监控​、模型评估​。

2025-09-04 21:43:39 441

原创 PyTorch学习不踩坑(第五讲 全连接层、高维数组、图像数据、文本数据)

实战练习张量、自动微分、卷积层、池化层、激活函数、循环层、全连接层、高维数组、图像数据、文本数据的操作。它让下一层的每个神经元都能获取到上一层的全部信息,再通过自己学到的“权重”和“偏置”,来决定如何利用这些信息来完成自己的任务。下面,我们编写一个案例展示了全连接层如何将输入特征(专家意见)通过权重矩阵(信任度)转换为新的表示(总经理决策),最终形成预测结果。全连接层指一个由多个神经元所组成的层,所有的输出和该层所有输入都是有连接的。其他的数据集,可以自行根据表格列出来的数据集去研究研究哦。

2025-09-04 21:38:50 647

原创 PyTorch学习不踩坑(第四讲 激活函数与循环层)

线性整流函数(Linear rectification function),又称修正线性单元,是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种为代表的非线性函数。所谓激活函数(Activation Function),就是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。在PyTorch中,RNN是循环层的一种,但循环层(Recurrent Layers)是一个更广泛的概念,它包含了多种不同的结构,RNN只是其中最基础的一种。

2025-09-04 21:31:43 638

原创 PyTorch学习不踩坑(第三讲 自动微分和卷积)

接上回,我们今天进行Demo编写。实战练习张量、自动微分、卷积层、池化层、激活函数、循环层、全链接层、高维数组、图像数据、文本数据的操作。学习完后,我们将进入深度神经网络学习和训练。加油哦~我会尽量的用更通俗易懂及图形拆解方式讲解,有疑问可以留言哦~注意:这些内容,我会分为多个章节进行讲。上一回我们已经讲解到张量,今天继续往下讲自动微分(Automatic differentiation)是计算机程序自动计算函数导数的技术。乍一看,可能有点茫然。我们会议下数学中的求导。

2025-09-04 21:26:46 1233

原创 PyTorch学习不踩坑(第二讲 张量)

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数。print("选择第 1 列和第 2 列:\n", tensor[:, [1, 2]]) # 输出:[[2, 3], [5, 6], [8, 9]]print("选择第 0 行和第 2 行:\n", tensor[[0, 2], :]) # 输出:[[1, 2, 3], [7, 8, 9]]print("沿行拼接:\n", concat_tensor) # 输出:[[1, 2], [3, 4], [5, 6], [7, 8]]

2025-09-04 21:16:08 734

原创 PyTorch学习不踩坑(第1讲 环境准备)

这里,我们知道这个东西即可,暂时不用对此进行更多的学习。在数学中,单独的数称为标量,一列或一行数组称为向量,二维数组称为矩阵,维度超过2则称为张量(Tensor). 下面我用图来给大家做一个解释。PyTorch的基本功能涵盖了构建和训练神经网络的所有操作,如张量、自动微分(Autograd)、神经网络模块、数据集、优化器、GPU支持、torch.nn模块的卷积池化等。卷积是分析数学中一种重要的运算,可以看作是两个函数或信号在某种程度上的“重叠”运算可以看作是两个函数或信号在某种程度上的“重叠”运算。

2025-09-04 21:08:34 705

原创 python语言基础 &免费公开课(二)

本文为编程新手提供简洁的语法入门指南,旨在轻松普及基础知识,避免复杂冗长的讲解,保持学习兴趣。文章强调简单理解,不深入探讨具体意义,并预告了后续有趣的语言学习内容。如遇问题,可加入QQ群833077481进行咨询。

2025-05-13 15:47:51 201

原创 python语言基础 &免费公开课

首先,我们先来配置我们电脑的环境。这里我也不乐意讲那个Visual Studio Code、Eclipse、Sublime Text。至少大部分并不愿意去入手那种各种配置都要搞好一阵的工具。现在我们直接用集成好的工具,先学会了本领,再去研究其他工具好吗?从现在开始,让我带你进入一场别开生面的学习之旅。让我们抛弃传统一上来就开始数据类、算法这样的基础教学。我相信那样多的理论知识会让人望而却步。今天就到这里,接下来我们会再来一场有趣的语言学习。配置过程中,若是遇到问题,可进QQ群咨询:833077481。

2025-05-12 15:36:33 184

原创 零基础AI入学真的靠谱吗?

当前市面标榜"零基础三个月高薪就业"的全栈开发课程,往往只停留在HTML/CSS/JavaScript基础语法层面。但企业实际需要的React+TypeScript工程化开发能力、Spring Cloud微服务架构设计、Docker+K8s持续集成等关键技术,90%的课程都未涉及真实项目演练。我曾参与的某机构Java课程,全程使用Eclipse而非企业级IntelliJ IDEA,项目案例停留在20年前的Servlet+jsp技术栈。AI领域的"零基础入门"乱象更为严重。

2025-05-12 14:20:41 681

原创 轻松学python,开创轻量级副业

最近准备利用工作闲暇之余,做一个跟Python+副业,及目前前言AI技术相关的课程。有兴趣可以关注我哦~。我会在把所有内容全部更新到CSDN平台上。第一阶段:Python 基础。第二阶段:Python 进阶。

2024-12-02 14:51:49 385

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除