NumPy 数组基础

本文详细介绍了NumPy库中创建、操作数组的各种方法,包括整形、浮点型数组,多维数组的构造,以及数组的初始化、索引、切片、视图、副本、变形和拼接等操作。此外,还涵盖了随机数生成和单位矩阵的创建,是学习NumPy基础的实用教程。
摘要由CSDN通过智能技术生成

import numpy as np

版本

np.__version__
'1.16.2'

整形数组

np.array([1, 2, 3, 4, 5], dtype='int8')
array([1, 2, 3, 4, 5], dtype=int8)

浮点型数组

np.array([1, 2, 3, 4, 5], dtype='float32')
array([1., 2., 3., 4., 5.], dtype=float32)

嵌套列表构成的多维数组,内层的列表被当作二维数组的行

np.array([range(i, i+3) for i in [2, 4, 6]])
array([[2, 3, 4],
       [4, 5, 6],
       [6, 7, 8]])

创建一个长度为10的数组,数组的值都是0

np.zeros(10, dtype='int8')
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int8)
np.full(10, 0, dtype='int8')
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int8)

创建一个长度为10的数组,数组的值都是1

np.ones(10, dtype='float32')
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], dtype=float32)
np.full(10, 1, dtype='float32')
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], dtype=float32)

创建一个3×5的浮点型数组,数组的值都是3.14

np.full((3, 5), 3.14, dtype='float32')
array([[3.14, 3.14, 3.14, 3.14, 3.14],
       [3.14, 3.14, 3.14, 3.14, 3.14],
       [3.14, 3.14, 3.14, 3.14, 3.14]], dtype=float32)

创建一个数组,数组的值是一个线性序列

# 从0开始,到20结束,步长为2
# (它和内置的range()函数类似)
np.arange(0, 20, 2)
array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18])

创建一个5个元素的数组,这5个数均匀地分配到0~1

np.linspace(0, 1, 5)
array([0.  , 0.25, 0.5 , 0.75, 1.  ])

创建一个3×3的、在0~1均匀分布的随机数数组


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值