1.什么是二分:如果有一个性质,能将给定的区间划分为两部分,我们就用二分求出性质的边界。
2.注意:二分的本质不是单调性,而是边界。有单调性一定能够二分,但是能二分的不一定都具有单调性。
整数二分
板子:
while (left < right) {
int mid = (left + right) >> 1;
if (check(mid)) right = mid;
else left = mid + 1;
}
cout << left << endl;
往左找就用这个
while (left < right) {
int mid = (left + right + 1) >> 1;
if (check(mid)) left = mid;
else right = mid - 1;
}
cout << left << endl;
往右找就用第二个
现在来解释为什么第二个板子中的mid要+1:假设mid不+1,当循环到right = left + 1时,mid = left,这时就会陷入死循环,mid加上1就能够避免这样的情况产生。
简单的二分查找:
题目要求输出第一次出现的编号,所以很显然是往左找:
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+5;
int a[N];
int main(){
int n,m,i;
scanf("%d %d",&n,&m);
for(i=1; i<=n; i++) scanf("%d",&a[i]);
while(m--){
int t,l,r,mid;
scanf("%d",&t);
l=1,r=n;
while(l<r){
mid=l+(r-l)/2;
if(a[mid] >= t) r=mid;
else l=mid+1;
}
if(a[l] == t) printf("%d ",l);
else printf("-1 ");
}
return 0;
}
lower_bound()和upper_bound()函数的使用
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+5;
ll a[N];
int main(){
int n,i;
ll c,x,ans=0;
cin >> n >> c;
for(i=1; i<=n; i++){
cin >> a[i];
}
sort(a+1,a+1+n);
for(i=1; i<=n; i++){
x = a[i]+c; //将A - B = C转化成A = B + C
int pos1 = lower_bound(a+1,a+1+n,x)-a-1; //A首次出现的位置
int pos2 = upper_bound(a+1,a+1+n,x)-a-1; //A最后出现的位置的下一位
ans += (pos2-pos1); //对于同一个B,符合条件的A的个数记录下来
}
cout << ans;
return 0;
}
二分的应用(check的写法)
这题在我刚学完二分板子之后看一脸懵逼,现在回过头来写一写思路,首先答案的范围就是left和right的取值 ,同一个位置只会放一块石头,所以距离最小是1,起点和终点的石头是不会被移走的,所以距离最大是L,因此left=1,right=l。
然后就是这题的check怎么写,思路放在注释里了。
因为是找最短距离的最大值(往右找),所以用第二个板子:
#include<bits/stdc++.h>
using namespace std;
int l, n, m,a[50005];
int check(int k) {
int ans = 0, t = a[0]; //t用来记录当前的位置
for (int i = 1; i <= n+1; i++) { //最后一块石头不能移动
if (a[i] - t >= k) t = a[i]; //如果距离大于k就跳过去
else ans++; //否则就移走
}
if (ans <= m) return 1;
else return 0;
}
int main() {
cin >> l >> n >> m;
a[0] = 0, a[n + 1] = l;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
int left = 1, right = l;
while (left < right) {
int mid = (left + right + 1) >> 1;
if (check(mid)) left = mid;
else right = mid - 1;
}
cout << left;
return 0;
}
浮点二分
相比于整数二分,浮点二分不存在除以2导致的边界问题,每次循环,区间都是严格减半
板子:
while(r-l>1e-5) //>1e-5是为了确保精度,具体多少一般是比题目要求再小两位即可
{
double mid = (l+r)/2;
if(check(mid)) l=mid; //或r=mid;
else r=mid; //或l=mid;
}
这题其实和砍树那题很像,只不过是换成了浮点数,思路都在注释里:
#include<bits/stdc++.h>
using namespace std;
int n, k;
double a[10005];
int check(double mid) {
int cnt = 0;
for (int i = 0; i < n; i++) {
cnt += a[i] / mid; //记录当前mid下每根绳子最多能被切成多少段
}
if (cnt < k) return 1; //如果小于k,说明mid大了
else return 0; //反之则可以切得更长
}
int main() {
cin >> n >> k;
double l = 0, r = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
r = max(r, a[i]);
}
while (r - l > 1e-4) {
double mid = (l + r) / 2;
if (check(mid)) r = mid;
else l = mid;
}
l -= 0.004; //题目要求小数点两位之后直接舍掉
printf("%.2lf", l);
return 0;
}
总结:一般的二分查找直接用板子就可以,对于要写check的题,一定要找准范围,两个板子一定要记牢!!!!