二分基础总结

1.什么是二分:如果有一个性质,能将给定的区间划分为两部分,我们就用二分求出性质的边界。

2.注意:二分的本质不是单调性,而是边界。有单调性一定能够二分,但是能二分的不一定都具有单调性。


整数二分

板子:

while (left < right) {
	int mid = (left + right) >> 1;
	if (check(mid)) right = mid;
	else left = mid + 1;
}
cout << left << endl;

往左找就用这个

while (left < right) {
	int mid = (left + right + 1) >> 1;
	if (check(mid)) left = mid;
	else right = mid - 1;
}
cout << left << endl;

往右找就用第二个

现在来解释为什么第二个板子中的mid要+1:假设mid不+1,当循环到right = left + 1时,mid = left,这时就会陷入死循环,mid加上1就能够避免这样的情况产生。


简单的二分查找:

题目要求输出第一次出现的编号,所以很显然是往左找:

#include<bits/stdc++.h>
using namespace std;

const int N=1e6+5;
int a[N];

int main(){
	int n,m,i;
	scanf("%d %d",&n,&m);
	for(i=1; i<=n; i++) scanf("%d",&a[i]);
	
	while(m--){
		int t,l,r,mid;
		scanf("%d",&t);
		l=1,r=n;
		while(l<r){
			mid=l+(r-l)/2;
			if(a[mid] >= t) r=mid;
			else l=mid+1;
		}
		if(a[l] == t) printf("%d ",l);
		else printf("-1 ");
	}
	return 0;
}

 lower_bound()和upper_bound()函数的使用

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N=2e5+5;
ll a[N];
int main(){
	int n,i;
	ll c,x,ans=0;
	cin >> n >> c;
	for(i=1; i<=n; i++){
		cin >> a[i];
	}
	sort(a+1,a+1+n);
	for(i=1; i<=n; i++){
		x = a[i]+c;  //将A - B = C转化成A = B + C
		int pos1 = lower_bound(a+1,a+1+n,x)-a-1;  //A首次出现的位置
		int pos2 = upper_bound(a+1,a+1+n,x)-a-1;  //A最后出现的位置的下一位
		ans += (pos2-pos1);  //对于同一个B,符合条件的A的个数记录下来
	}
	cout << ans;
	return 0;
}

 


二分的应用(check的写法)

 

这题在我刚学完二分板子之后看一脸懵逼,现在回过头来写一写思路,首先答案的范围就是left和right的取值 ,同一个位置只会放一块石头,所以距离最小是1,起点和终点的石头是不会被移走的,所以距离最大是L,因此left=1,right=l。

然后就是这题的check怎么写,思路放在注释里了。

因为是找最短距离的最大值(往右找),所以用第二个板子:

#include<bits/stdc++.h>
using namespace std;

int l, n, m,a[50005];

int check(int k) {
	int ans = 0, t = a[0];   //t用来记录当前的位置
	for (int i = 1; i <= n+1; i++) {  //最后一块石头不能移动
		if (a[i] - t >= k) t = a[i];  //如果距离大于k就跳过去
		else ans++;   //否则就移走
	}
	if (ans <= m) return 1;
	else return 0;
}

int main() {
	cin >> l >> n >> m;
	a[0] = 0, a[n + 1] = l;
	for (int i = 1; i <= n; i++) {
		cin >> a[i];
	}
	int left = 1, right = l;
	while (left < right) {
		int mid = (left + right + 1) >> 1;
		if (check(mid)) left = mid;
		else right = mid - 1;
	}
	cout << left;
	return 0;
}

浮点二分

相比于整数二分,浮点二分不存在除以2导致的边界问题,每次循环,区间都是严格减半

板子:

	while(r-l>1e-5)   //>1e-5是为了确保精度,具体多少一般是比题目要求再小两位即可
	{
		double mid = (l+r)/2;
		if(check(mid)) l=mid; //或r=mid;
		else r=mid; //或l=mid;
	}

 这题其实和砍树那题很像,只不过是换成了浮点数,思路都在注释里:

#include<bits/stdc++.h>
using namespace std;

int n, k;
double a[10005];

int check(double mid) {
	int cnt = 0;
	for (int i = 0; i < n; i++) {
		cnt += a[i] / mid;  //记录当前mid下每根绳子最多能被切成多少段
	}
	if (cnt < k) return 1;  //如果小于k,说明mid大了
	else return 0;  //反之则可以切得更长
}

int main() {
	cin >> n >> k;
	double l = 0, r = 0;
	for (int i = 0; i < n; i++) {
		cin >> a[i];
		r = max(r, a[i]);
	}

	while (r - l > 1e-4) {
		double mid = (l + r) / 2;
		if (check(mid)) r = mid;
		else l = mid;
	}
	l -= 0.004;  //题目要求小数点两位之后直接舍掉
	printf("%.2lf", l);
	return 0;
}

总结:一般的二分查找直接用板子就可以,对于要写check的题,一定要找准范围,两个板子一定要记牢!!!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值