这虽然是一道简单题,但也不是毫无算法含量的。
问题描述:
给定两个没有重复元素的数组 nums1
和 nums2
,其中nums1
是 nums2
的子集。找到 nums1
中每个元素在 nums2
中的下一个比其大的值。
nums1
中数字 x 的下一个更大元素是指 x 在 nums2
中对应位置的右边的第一个比 x 大的元素。如果不存在,对应位置输出-1。
1、暴力N2列举:
这也是看完题目最开始有的思路,自然而然的枚举。对于nums2的每一个元素i,向后找更大元素,这样就是N22的复杂度。最后在对nums1每一个元素找到其在nums2的位置,就是N1*N2。结合起来就是(N1+N2)*N2。
2、优化的手段:
其实找更大元素的时候可以做一下剪枝。如果在位置 i 处找“下一个更大元素”并且找到了位置 j (i<j),即 nums2[i]<nums2[j],那么在i<k<j处,如果nums2[i]<nums[k]<nums[j],那么就可以认为顺带找到了位置 k 的“下一个更大元素”。如果 nums2[k] > nums2[j] 那么就是 k 到 j 都没有比 nums2[k]要大的数,可以从 j + 1 开始找。因为题目说元素是唯一的,也就不会出现 nums2[k] = nums2[j]。应用这种方法,可以把原本N22的枚举做成最快N2,最慢的N22算法,这两种分别对应 nums2 的元素是单调递增和递减的情况。
int numsSize = nums.size();
int * begin = new int[numsSize];
int * result = new int[numsSize];
for (int i = 0; i < numsSize; ++i) begin[i] = i;
for (int i = 0; i < numsSize - 1; ++i){
if (begin[i] == -1) continue;
bool notFound = true;
for (int j = begin[i] + 1; j < numsSize; ++j){
if (nums[j] > nums[i]){
for (int k = j; k >= i; --k) {
if (nums[k] > nums[i] && nums[k] < nums[j]) {
begin[k] = -1;
result[k] = nums[j];
}
else if (nums[k] >= nums[j]) begin[k] = j;
else if (k == i) result[k] = nums[j];
}
notFound = false;
break;
}
}
if (notFound) {
for (int k = numsSize - 1; k >= i; --k) {
if (nums[k] >= nums[i]) {
begin[k] = -1;
result[k] = -1;
}
}
}
}
result[numsSize - 1] = -1;
对于从 nums2中“找元素”,有想过对 nums2 做一次排序,用二分来找,这样可以在 (N1+N2) * logN2 实现。不过最后还是用了原始的写法。
3、栈的妙用
这是第一个让我感觉到栈的作用的题目。在看完网上大佬的题解后,发现用栈可以把找最大元素复杂度降到N2的线性水平。基本原理是对于 nums2 的每一个元素 i 做一下步骤。
①如果当前栈顶元素比 nums2[i] 小,栈顶出栈,重复①到栈顶比 nums2[i] 大或者栈为空。
②nums2[i] 入栈。
因为每一个元素只经历了入栈和出栈的操作,所以总复杂度为N2。