这一题开始正着想就懵逼了,果真应该倒着想><。因为z>=x and y,所以当前状态是(x+z,y)还是(x,y+z)可以根据(ex,ey)的大小关系得出。假设d=gcd(x,y),那么x=ad,y=bd,z=xy/d=abd and gcd(a,b)=1。对于第一种状态,ex=ad+abd, ey=bd, a(b+1)与b互质。所以gcd(ex,ey)=d。那么x=ex/(1+b),按照这种关系dfs即可,当然先要判断对应的a是否存在(是否为整数)。如果b=1, a(b+1)与b不互质,但是x=ad,y=d,z=ad,gcd(ex,ey)=gcd(2ad,d)=d。第二种情况同理。
#include<iostream>
#include<stdio.h>
#include<cstdio>
#include<string>
#include<cmath>
#include<stdlib.h>
#include<algorithm>
#include<string.h>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
using namespace std;
//hdu 5584
const int maxn=1e9+10;
const int INF=0x3f3f3f3f;
int T;
int ex;
int ey;
int ans;
int quickgcd(int a,int b)
{
if(a==0) return b;
if(b==0) return a;
if(!(a&1)&&!(b&1)) return quickgcd(a>>1,b>>1)<<1;
else if(!(b&1)) return quickgcd(a,b>>1);
else if(!(a&1)) return quickgcd(a>>1,b);
else return quickgcd(abs(a-b),min(a,b));
}
void dfs(int x,int y)
{
if(x<=0||y<=0) return;
int d=quickgcd(x,y);
if(x>y)//ex=sx+z,ey=sy
{
int sy=y;
int sx=(x%(d*(1+y/d))==0)?x/(1+y/d):0;
if(sx>0&&sy>0)
{
ans++;
dfs(sx,sy);
}
}
else if(x<=y)//ex=sx,ey=sy+z
{
//int d=quickgcd(x,y);
int sx=x;
int sy=(y%(d*(1+x/d))==0)?y/(1+x/d):0;
if(sx>0&&sy>0)
{
ans++;
dfs(sx,sy);
}
}
}
int main()
{
freopen("input.txt","r",stdin);
scanf("%d",&T);
for(int ca=1;ca<=T;ca++)
{
scanf("%d %d",&ex,&ey);
ans=1;//count (ex,ey) as one start
dfs(ex,ey);
printf("Case #%d: %d\n",ca,ans);
}
}